Cargando…

Structural Properties of Highly Doped Borazino Polyphenylenes Obtained through Condensation Reaction

[Image: see text] Here we describe the synthesis and spectroscopic and structural characterization of various borazine-doped polyphenylenes displaying high doping dosages (16–18%). Capitalizing on the condensation reaction approach, the desired products were formed using a mixture of p-phenylendiami...

Descripción completa

Detalles Bibliográficos
Autores principales: Dosso, Jacopo, Marinelli, Davide, Demitri, Nicola, Bonifazi, Davide
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6649256/
https://www.ncbi.nlm.nih.gov/pubmed/31460023
http://dx.doi.org/10.1021/acsomega.9b00830
_version_ 1783438006024142848
author Dosso, Jacopo
Marinelli, Davide
Demitri, Nicola
Bonifazi, Davide
author_facet Dosso, Jacopo
Marinelli, Davide
Demitri, Nicola
Bonifazi, Davide
author_sort Dosso, Jacopo
collection PubMed
description [Image: see text] Here we describe the synthesis and spectroscopic and structural characterization of various borazine-doped polyphenylenes displaying high doping dosages (16–18%). Capitalizing on the condensation reaction approach, the desired products were formed using a mixture of p-phenylendiamine and aniline with BCl(3), followed by the addition of an aryl lithium derivative. The use of mesityl lithium (MesLi) yields strained multiborazine derivatives, which proved to be unstable in the presence of moisture. However, when xylyl lithium (XylLi) was used, chemically stable multiborazines were obtained, with oligomers showing molecular weight up to 10(4), corresponding to 16–18 monomer units. While the dimer, trimer, and tetramer could be isolated as pure products and their structure characterized by mass and NMR analysis, higher oligomers could only be isolated as mixtures of B-hydroxy-substituted derivatives and characterized by gel permeation chromatography. The structures of the dimer and trimer derivatives were confirmed by X-ray analysis, which nicely showed the presence of the two and three borazine rings spaced by one and two 1,4-aryl bridges, respectively. Notably, the trimer forms a porous crystalline clathrate. The peripheral xylyl and phenyl moieties of each molecule intramolecularly embrace each other through C–H and π–π stacking interactions. Steady-state UV–vis absorption characterization suggested that the molecules are UV absorbers, with the extinction coefficient linearly scaling with the degree of oligomerization. On the other hand, low-emission quantum yields were obtained for all derivatives (<7%), suggesting that high BN-doping dosages dramatically affect the emission properties of the doped polyphenylenes.
format Online
Article
Text
id pubmed-6649256
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-66492562019-08-27 Structural Properties of Highly Doped Borazino Polyphenylenes Obtained through Condensation Reaction Dosso, Jacopo Marinelli, Davide Demitri, Nicola Bonifazi, Davide ACS Omega [Image: see text] Here we describe the synthesis and spectroscopic and structural characterization of various borazine-doped polyphenylenes displaying high doping dosages (16–18%). Capitalizing on the condensation reaction approach, the desired products were formed using a mixture of p-phenylendiamine and aniline with BCl(3), followed by the addition of an aryl lithium derivative. The use of mesityl lithium (MesLi) yields strained multiborazine derivatives, which proved to be unstable in the presence of moisture. However, when xylyl lithium (XylLi) was used, chemically stable multiborazines were obtained, with oligomers showing molecular weight up to 10(4), corresponding to 16–18 monomer units. While the dimer, trimer, and tetramer could be isolated as pure products and their structure characterized by mass and NMR analysis, higher oligomers could only be isolated as mixtures of B-hydroxy-substituted derivatives and characterized by gel permeation chromatography. The structures of the dimer and trimer derivatives were confirmed by X-ray analysis, which nicely showed the presence of the two and three borazine rings spaced by one and two 1,4-aryl bridges, respectively. Notably, the trimer forms a porous crystalline clathrate. The peripheral xylyl and phenyl moieties of each molecule intramolecularly embrace each other through C–H and π–π stacking interactions. Steady-state UV–vis absorption characterization suggested that the molecules are UV absorbers, with the extinction coefficient linearly scaling with the degree of oligomerization. On the other hand, low-emission quantum yields were obtained for all derivatives (<7%), suggesting that high BN-doping dosages dramatically affect the emission properties of the doped polyphenylenes. American Chemical Society 2019-05-28 /pmc/articles/PMC6649256/ /pubmed/31460023 http://dx.doi.org/10.1021/acsomega.9b00830 Text en Copyright © 2019 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Dosso, Jacopo
Marinelli, Davide
Demitri, Nicola
Bonifazi, Davide
Structural Properties of Highly Doped Borazino Polyphenylenes Obtained through Condensation Reaction
title Structural Properties of Highly Doped Borazino Polyphenylenes Obtained through Condensation Reaction
title_full Structural Properties of Highly Doped Borazino Polyphenylenes Obtained through Condensation Reaction
title_fullStr Structural Properties of Highly Doped Borazino Polyphenylenes Obtained through Condensation Reaction
title_full_unstemmed Structural Properties of Highly Doped Borazino Polyphenylenes Obtained through Condensation Reaction
title_short Structural Properties of Highly Doped Borazino Polyphenylenes Obtained through Condensation Reaction
title_sort structural properties of highly doped borazino polyphenylenes obtained through condensation reaction
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6649256/
https://www.ncbi.nlm.nih.gov/pubmed/31460023
http://dx.doi.org/10.1021/acsomega.9b00830
work_keys_str_mv AT dossojacopo structuralpropertiesofhighlydopedborazinopolyphenylenesobtainedthroughcondensationreaction
AT marinellidavide structuralpropertiesofhighlydopedborazinopolyphenylenesobtainedthroughcondensationreaction
AT demitrinicola structuralpropertiesofhighlydopedborazinopolyphenylenesobtainedthroughcondensationreaction
AT bonifazidavide structuralpropertiesofhighlydopedborazinopolyphenylenesobtainedthroughcondensationreaction