Cargando…
Cu-Doped Carbon Dots as Catalysts for the Chemiluminescence Detection of Glucose
[Image: see text] Development of metal-doped carbon dots (CDs) to effectively modulate their electronic properties and surface chemical reactivities is still in its early stage. In this paper, a facile solid-phase synthesis strategy was developed to synthesize Cu-doped CDs (Cu-CDs) using citric acid...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6649278/ https://www.ncbi.nlm.nih.gov/pubmed/31460081 http://dx.doi.org/10.1021/acsomega.9b00738 |
Sumario: | [Image: see text] Development of metal-doped carbon dots (CDs) to effectively modulate their electronic properties and surface chemical reactivities is still in its early stage. In this paper, a facile solid-phase synthesis strategy was developed to synthesize Cu-doped CDs (Cu-CDs) using citric acid as the carbon source and Cu(NO(3))(2)·3H(2)O as the dopant, respectively. The as-prepared Cu-CDs exhibited superior peroxidase-like activity to horseradish peroxidase and were stable under a wide range of pH and temperatures. Consequently, the Cu-CD-based chemiluminescence sensing was applied to sensitively detect glucose with a low detection limit of 0.32 μM, and the recoveries and the relative standard deviation of the serum sample are 87.2–112.2 and 8.16% (n = 6), respectively. Notably, the proposed chemiluminescence sensing was also successfully applied for label-free detection of glucose in complex biological samples, which envisioned its potential applications in clinical diagnosis and other analytical assays. |
---|