Cargando…
Coding palindromes in mitochondrial genes of Nematomorpha
Inverted repeats are common DNA elements, but they rarely overlap with protein-coding sequences due to the ensuing conflict with the structure and function of the encoded protein. We discovered numerous perfect inverted repeats of considerable length (up to 284 bp) embedded within the protein-coding...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6649704/ https://www.ncbi.nlm.nih.gov/pubmed/31194871 http://dx.doi.org/10.1093/nar/gkz517 |
Sumario: | Inverted repeats are common DNA elements, but they rarely overlap with protein-coding sequences due to the ensuing conflict with the structure and function of the encoded protein. We discovered numerous perfect inverted repeats of considerable length (up to 284 bp) embedded within the protein-coding genes in mitochondrial genomes of four Nematomorpha species. Strikingly, both arms of the inverted repeats encode conserved regions of the amino acid sequence. We confirmed enzymatic activity of the respiratory complex I encoded by inverted repeat-containing genes. The nucleotide composition of inverted repeats suggests strong selection at the amino acid level in these regions. We conclude that the inverted repeat-containing genes are transcribed and translated into functional proteins. The survey of available mitochondrial genomes reveals that several other organisms possess similar albeit shorter embedded repeats. Mitochondrial genomes of Nematomorpha demonstrate an extraordinary evolutionary compromise where protein function and stringent secondary structure elements within the coding regions are preserved simultaneously. |
---|