Cargando…
Diverse families of transposable elements affect the transcriptional regulation of stress-response genes in Drosophila melanogaster
Although transposable elements are an important source of regulatory variation, their genome-wide contribution to the transcriptional regulation of stress-response genes has not been studied yet. Stress is a major aspect of natural selection in the wild, leading to changes in the transcriptional reg...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6649756/ https://www.ncbi.nlm.nih.gov/pubmed/31175824 http://dx.doi.org/10.1093/nar/gkz490 |
_version_ | 1783438045687578624 |
---|---|
author | Villanueva-Cañas, José Luis Horvath, Vivien Aguilera, Laura González, Josefa |
author_facet | Villanueva-Cañas, José Luis Horvath, Vivien Aguilera, Laura González, Josefa |
author_sort | Villanueva-Cañas, José Luis |
collection | PubMed |
description | Although transposable elements are an important source of regulatory variation, their genome-wide contribution to the transcriptional regulation of stress-response genes has not been studied yet. Stress is a major aspect of natural selection in the wild, leading to changes in the transcriptional regulation of a variety of genes that are often triggered by one or a few transcription factors. In this work, we take advantage of the wealth of information available for Drosophila melanogaster and humans to analyze the role of transposable elements in six stress regulatory networks: immune, hypoxia, oxidative, xenobiotic, heat shock, and heavy metal. We found that transposable elements were enriched for caudal, dorsal, HSF, and tango binding sites in D. melanogaster and for NFE2L2 binding sites in humans. Taking into account the D. melanogaster population frequencies of transposable elements with predicted binding motifs and/or binding sites, we showed that those containing three or more binding motifs/sites are more likely to be functional. For a representative subset of these TEs, we performed in vivo transgenic reporter assays in different stress conditions. Overall, our results showed that TEs are relevant contributors to the transcriptional regulation of stress-response genes. |
format | Online Article Text |
id | pubmed-6649756 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-66497562019-07-29 Diverse families of transposable elements affect the transcriptional regulation of stress-response genes in Drosophila melanogaster Villanueva-Cañas, José Luis Horvath, Vivien Aguilera, Laura González, Josefa Nucleic Acids Res Genomics Although transposable elements are an important source of regulatory variation, their genome-wide contribution to the transcriptional regulation of stress-response genes has not been studied yet. Stress is a major aspect of natural selection in the wild, leading to changes in the transcriptional regulation of a variety of genes that are often triggered by one or a few transcription factors. In this work, we take advantage of the wealth of information available for Drosophila melanogaster and humans to analyze the role of transposable elements in six stress regulatory networks: immune, hypoxia, oxidative, xenobiotic, heat shock, and heavy metal. We found that transposable elements were enriched for caudal, dorsal, HSF, and tango binding sites in D. melanogaster and for NFE2L2 binding sites in humans. Taking into account the D. melanogaster population frequencies of transposable elements with predicted binding motifs and/or binding sites, we showed that those containing three or more binding motifs/sites are more likely to be functional. For a representative subset of these TEs, we performed in vivo transgenic reporter assays in different stress conditions. Overall, our results showed that TEs are relevant contributors to the transcriptional regulation of stress-response genes. Oxford University Press 2019-07-26 2019-06-08 /pmc/articles/PMC6649756/ /pubmed/31175824 http://dx.doi.org/10.1093/nar/gkz490 Text en © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Genomics Villanueva-Cañas, José Luis Horvath, Vivien Aguilera, Laura González, Josefa Diverse families of transposable elements affect the transcriptional regulation of stress-response genes in Drosophila melanogaster |
title | Diverse families of transposable elements affect the transcriptional regulation of stress-response genes in Drosophila melanogaster |
title_full | Diverse families of transposable elements affect the transcriptional regulation of stress-response genes in Drosophila melanogaster |
title_fullStr | Diverse families of transposable elements affect the transcriptional regulation of stress-response genes in Drosophila melanogaster |
title_full_unstemmed | Diverse families of transposable elements affect the transcriptional regulation of stress-response genes in Drosophila melanogaster |
title_short | Diverse families of transposable elements affect the transcriptional regulation of stress-response genes in Drosophila melanogaster |
title_sort | diverse families of transposable elements affect the transcriptional regulation of stress-response genes in drosophila melanogaster |
topic | Genomics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6649756/ https://www.ncbi.nlm.nih.gov/pubmed/31175824 http://dx.doi.org/10.1093/nar/gkz490 |
work_keys_str_mv | AT villanuevacanasjoseluis diversefamiliesoftransposableelementsaffectthetranscriptionalregulationofstressresponsegenesindrosophilamelanogaster AT horvathvivien diversefamiliesoftransposableelementsaffectthetranscriptionalregulationofstressresponsegenesindrosophilamelanogaster AT aguileralaura diversefamiliesoftransposableelementsaffectthetranscriptionalregulationofstressresponsegenesindrosophilamelanogaster AT gonzalezjosefa diversefamiliesoftransposableelementsaffectthetranscriptionalregulationofstressresponsegenesindrosophilamelanogaster |