Cargando…
Learning common and specific patterns from data of multiple interrelated biological scenarios with matrix factorization
High-throughput biological technologies (e.g. ChIP-seq, RNA-seq and single-cell RNA-seq) rapidly accelerate the accumulation of genome-wide omics data in diverse interrelated biological scenarios (e.g. cells, tissues and conditions). Integration and differential analysis are two common paradigms for...
Autores principales: | Zhang, Lihua, Zhang, Shihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6649783/ https://www.ncbi.nlm.nih.gov/pubmed/31175825 http://dx.doi.org/10.1093/nar/gkz488 |
Ejemplares similares
-
Discovery of two-level modular organization from matched genomic data via joint matrix tri-factorization
por: Chen, Jinyu, et al.
Publicado: (2018) -
Matrix Integrative Analysis (MIA) of Multiple Genomic Data for Modular Patterns
por: Chen, Jinyu, et al.
Publicado: (2018) -
Discovery of cell-type specific regulatory elements in the human genome using differential chromatin modification analysis
por: Chen, Chen, et al.
Publicado: (2013) -
Interrelations: the biological and physical sciences
por: Blackburn, Robert T. -
Approximate distance correlation for selecting highly interrelated genes across datasets
por: Shen, Qunlun, et al.
Publicado: (2021)