Cargando…

Treatment of a High-risk Thoracolumbar Compression Fracture Using Bilateral Expandable Titanium SpineJack Implants

In this case, an 80-year-old active patient developed an acute osteoporotic fracture after a fall at L1 above a previous interlaminar implant at L4-5 for stenosis with neurogenic claudication. Radiologic studies found both intra-discal and intra-vertebral vacuum clefts that are highly correlated wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Hartman, Jason, Granville, Michelle, Jacobson, Robert E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6649873/
https://www.ncbi.nlm.nih.gov/pubmed/31355063
http://dx.doi.org/10.7759/cureus.4701
Descripción
Sumario:In this case, an 80-year-old active patient developed an acute osteoporotic fracture after a fall at L1 above a previous interlaminar implant at L4-5 for stenosis with neurogenic claudication. Radiologic studies found both intra-discal and intra-vertebral vacuum clefts that are highly correlated with instability and progressive kyphosis. Long-term experience with kyphoplasty has shown that acute and subacute fractures can often be re-expanded; however, over three months to one year, the correction is frequently lost and the vertebral height continues to decrease leading to increased risk of both continued deformity and especially adjacent level fractures. The use of newly available titanium intra-vertebral implants combined with bone cement restores and maintains vertebral height and correction of deformities. Long-term studies also demonstrate a reduced risk of adjacent level fractures compared to balloon kyphoplasty. Using vertebral body implants that remain in place within the fractured vertebral body the initial height correction can be better maintained leading to less adjacent level fractures.