Cargando…
Using deep maxout neural networks to improve the accuracy of function prediction from protein interaction networks
Protein-protein interaction network data provides valuable information that infers direct links between genes and their biological roles. This information brings a fundamental hypothesis for protein function prediction that interacting proteins tend to have similar functions. With the help of recent...
Autores principales: | Wan, Cen, Cozzetto, Domenico, Fa, Rui, Jones, David T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650051/ https://www.ncbi.nlm.nih.gov/pubmed/31335894 http://dx.doi.org/10.1371/journal.pone.0209958 |
Ejemplares similares
-
Predicting human protein function with multi-task deep neural networks
por: Fa, Rui, et al.
Publicado: (2018) -
Improving deep convolutional neural networks with mixed maxout units
por: Zhao, Hui-zhen, et al.
Publicado: (2017) -
Feedback Artificial Shuffled Shepherd Optimization-Based Deep Maxout Network for Human Emotion Recognition Using EEG Signals
por: Bhanumathi, K. S., et al.
Publicado: (2022) -
DISOPRED3: precise disordered region predictions with annotated protein-binding activity
por: Jones, David T., et al.
Publicado: (2015) -
FFPred 2.0: Improved Homology-Independent Prediction of Gene Ontology Terms for Eukaryotic Protein Sequences
por: Minneci, Federico, et al.
Publicado: (2013)