Cargando…
Targeted anticancer potential against glioma cells of thymoquinone delivered by mesoporous silica core-shell nanoformulations with pH-dependent release
BACKGROUND AND PURPOSE: Glioma is one of the most aggressive primary brain tumors and is incurable. Surgical resection, radiation, and chemotherapies have been the standard treatments for brain tumors, however, they damage healthy tissue. Therefore, there is a need for safe anticancer drug delivery...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650459/ https://www.ncbi.nlm.nih.gov/pubmed/31410001 http://dx.doi.org/10.2147/IJN.S206899 |
_version_ | 1783438132056686592 |
---|---|
author | Shahein, Samar A Aboul-Enein, Ahmed M Higazy, Iman M Abou-Elella, Faten Lojkowski, Witold Ahmed, Esam R Mousa, Shaker A AbouAitah, Khaled |
author_facet | Shahein, Samar A Aboul-Enein, Ahmed M Higazy, Iman M Abou-Elella, Faten Lojkowski, Witold Ahmed, Esam R Mousa, Shaker A AbouAitah, Khaled |
author_sort | Shahein, Samar A |
collection | PubMed |
description | BACKGROUND AND PURPOSE: Glioma is one of the most aggressive primary brain tumors and is incurable. Surgical resection, radiation, and chemotherapies have been the standard treatments for brain tumors, however, they damage healthy tissue. Therefore, there is a need for safe anticancer drug delivery systems. This is particularly true for natural prodrugs such as thymoquinone (TQ), which has a high therapeutic potential for cancers but has poor water solubility and insufficient targeting capacity. We have tailored novel core-shell nanoformulations for TQ delivery against glioma cells using mesoporous silica nanoparticles (MSNs) as a carrier. METHODS: The core-shell nanoformulations were prepared with a core of MSNs loaded with TQ (MSNTQ), and the shell consisted of whey protein and gum Arabic (MSNTQ-WA), or chitosan and stearic acid (MSNTQ-CS). Nanoformulations were characterized, studied for release kinetics and evaluated for anticancer activity on brain cancer cells (SW1088 and A172) and cortical neuronal cells-2 (HCN2) as normal cells. Furthermore, they were evaluated for caspase-3, cytochrome c, cell cycle arrest, and apoptosis to understand the possible anticancer mechanism. RESULTS: TQ release was pH-dependent and different for core and core-shell nanoformulations. A high TQ release from MSNTQ was detected at neutral pH 7.4, while a high TQ release from MSNTQ-WA and MSNTQ-CS was obtained at acidic pH 5.5 and 6.8, respectively; thus, TQ release in acidic tumor environment was enhanced. The release kinetics fitted with the Korsmeyer–Peppas kinetic model corresponding to diffusion-controlled release. Comparative in vitro tests with cancer and normal cells indicated a high anticancer efficiency for MSNTQ-WA compared to free TQ, and low cytotoxicity in the case of normal cells. The core-shell nanoformulations significantly improved caspase-3 activation, cytochrome c triggers, cell cycle arrest at G2/M, and apoptosis induction compared to TQ. CONCLUSION: Use of MSNs loaded with TQ permit improved cancer targeting and opens the door to translating TQ into clinical application. Particularly good results were obtained for MSNTQ-WA. |
format | Online Article Text |
id | pubmed-6650459 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-66504592019-08-13 Targeted anticancer potential against glioma cells of thymoquinone delivered by mesoporous silica core-shell nanoformulations with pH-dependent release Shahein, Samar A Aboul-Enein, Ahmed M Higazy, Iman M Abou-Elella, Faten Lojkowski, Witold Ahmed, Esam R Mousa, Shaker A AbouAitah, Khaled Int J Nanomedicine Original Research BACKGROUND AND PURPOSE: Glioma is one of the most aggressive primary brain tumors and is incurable. Surgical resection, radiation, and chemotherapies have been the standard treatments for brain tumors, however, they damage healthy tissue. Therefore, there is a need for safe anticancer drug delivery systems. This is particularly true for natural prodrugs such as thymoquinone (TQ), which has a high therapeutic potential for cancers but has poor water solubility and insufficient targeting capacity. We have tailored novel core-shell nanoformulations for TQ delivery against glioma cells using mesoporous silica nanoparticles (MSNs) as a carrier. METHODS: The core-shell nanoformulations were prepared with a core of MSNs loaded with TQ (MSNTQ), and the shell consisted of whey protein and gum Arabic (MSNTQ-WA), or chitosan and stearic acid (MSNTQ-CS). Nanoformulations were characterized, studied for release kinetics and evaluated for anticancer activity on brain cancer cells (SW1088 and A172) and cortical neuronal cells-2 (HCN2) as normal cells. Furthermore, they were evaluated for caspase-3, cytochrome c, cell cycle arrest, and apoptosis to understand the possible anticancer mechanism. RESULTS: TQ release was pH-dependent and different for core and core-shell nanoformulations. A high TQ release from MSNTQ was detected at neutral pH 7.4, while a high TQ release from MSNTQ-WA and MSNTQ-CS was obtained at acidic pH 5.5 and 6.8, respectively; thus, TQ release in acidic tumor environment was enhanced. The release kinetics fitted with the Korsmeyer–Peppas kinetic model corresponding to diffusion-controlled release. Comparative in vitro tests with cancer and normal cells indicated a high anticancer efficiency for MSNTQ-WA compared to free TQ, and low cytotoxicity in the case of normal cells. The core-shell nanoformulations significantly improved caspase-3 activation, cytochrome c triggers, cell cycle arrest at G2/M, and apoptosis induction compared to TQ. CONCLUSION: Use of MSNs loaded with TQ permit improved cancer targeting and opens the door to translating TQ into clinical application. Particularly good results were obtained for MSNTQ-WA. Dove 2019-07-19 /pmc/articles/PMC6650459/ /pubmed/31410001 http://dx.doi.org/10.2147/IJN.S206899 Text en © 2019 Shahein et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Shahein, Samar A Aboul-Enein, Ahmed M Higazy, Iman M Abou-Elella, Faten Lojkowski, Witold Ahmed, Esam R Mousa, Shaker A AbouAitah, Khaled Targeted anticancer potential against glioma cells of thymoquinone delivered by mesoporous silica core-shell nanoformulations with pH-dependent release |
title | Targeted anticancer potential against glioma cells of thymoquinone delivered by mesoporous silica core-shell nanoformulations with pH-dependent release |
title_full | Targeted anticancer potential against glioma cells of thymoquinone delivered by mesoporous silica core-shell nanoformulations with pH-dependent release |
title_fullStr | Targeted anticancer potential against glioma cells of thymoquinone delivered by mesoporous silica core-shell nanoformulations with pH-dependent release |
title_full_unstemmed | Targeted anticancer potential against glioma cells of thymoquinone delivered by mesoporous silica core-shell nanoformulations with pH-dependent release |
title_short | Targeted anticancer potential against glioma cells of thymoquinone delivered by mesoporous silica core-shell nanoformulations with pH-dependent release |
title_sort | targeted anticancer potential against glioma cells of thymoquinone delivered by mesoporous silica core-shell nanoformulations with ph-dependent release |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650459/ https://www.ncbi.nlm.nih.gov/pubmed/31410001 http://dx.doi.org/10.2147/IJN.S206899 |
work_keys_str_mv | AT shaheinsamara targetedanticancerpotentialagainstgliomacellsofthymoquinonedeliveredbymesoporoussilicacoreshellnanoformulationswithphdependentrelease AT abouleneinahmedm targetedanticancerpotentialagainstgliomacellsofthymoquinonedeliveredbymesoporoussilicacoreshellnanoformulationswithphdependentrelease AT higazyimanm targetedanticancerpotentialagainstgliomacellsofthymoquinonedeliveredbymesoporoussilicacoreshellnanoformulationswithphdependentrelease AT abouelellafaten targetedanticancerpotentialagainstgliomacellsofthymoquinonedeliveredbymesoporoussilicacoreshellnanoformulationswithphdependentrelease AT lojkowskiwitold targetedanticancerpotentialagainstgliomacellsofthymoquinonedeliveredbymesoporoussilicacoreshellnanoformulationswithphdependentrelease AT ahmedesamr targetedanticancerpotentialagainstgliomacellsofthymoquinonedeliveredbymesoporoussilicacoreshellnanoformulationswithphdependentrelease AT mousashakera targetedanticancerpotentialagainstgliomacellsofthymoquinonedeliveredbymesoporoussilicacoreshellnanoformulationswithphdependentrelease AT abouaitahkhaled targetedanticancerpotentialagainstgliomacellsofthymoquinonedeliveredbymesoporoussilicacoreshellnanoformulationswithphdependentrelease |