Cargando…
International beeswax trade facilitates small hive beetle invasions
International trade can facilitate biological invasions, but the possible role of beeswax trade for small hive beetles (SHBs), Aethina tumida Murray (Coleoptera: Nitidulidae) is poorly understood. SHBs are parasites of social bee colonies native to sub-Saharan Africa and have become an invasive spec...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650460/ https://www.ncbi.nlm.nih.gov/pubmed/31337838 http://dx.doi.org/10.1038/s41598-019-47107-6 |
Sumario: | International trade can facilitate biological invasions, but the possible role of beeswax trade for small hive beetles (SHBs), Aethina tumida Murray (Coleoptera: Nitidulidae) is poorly understood. SHBs are parasites of social bee colonies native to sub-Saharan Africa and have become an invasive species. Since 1996, SHBs have established in all continents except Antarctica. Here, we combine mitochondrial DNA analyses (COI gene, N = 296 SHBs, 98 locations) with previously published beeswax trade data (FAO) for 12 confirmed SHB invasions. Our genetic data confirm previous findings and suggest novel SHB African origins. In nine out of 12 invasion cases, the genetic and beeswax trade data match. When excluding one confirmed pathway (bee imports) and two cases, for which no FAO data were available, the genetics and beeswax trade data consistently predict the same source. This strongly suggests that beeswax imports from Ethiopia, South Africa, Tanzania and the USA, respectively, have mainly been responsible for the past invasion success of this beetle species. Adequate mitigation measures should be applied to limit this key role of beeswax imports for the further spread of SHBs. Combining genetics with trade data appears to be a powerful tool to better understand and eventually mitigate biological invasions. |
---|