Cargando…
Estimating the success of re-identifications in incomplete datasets using generative models
While rich medical, behavioral, and socio-demographic data are key to modern data-driven research, their collection and use raise legitimate privacy concerns. Anonymizing datasets through de-identification and sampling before sharing them has been the main tool used to address those concerns. We her...
Autores principales: | Rocher, Luc, Hendrickx, Julien M., de Montjoye, Yves-Alexandre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650473/ https://www.ncbi.nlm.nih.gov/pubmed/31337762 http://dx.doi.org/10.1038/s41467-019-10933-3 |
Ejemplares similares
-
The risk of re-identification remains high even in country-scale location datasets
por: Farzanehfar, Ali, et al.
Publicado: (2021) -
On the difficulty of achieving Differential Privacy in practice: user-level guarantees in aggregate location data
por: Houssiau, Florimond, et al.
Publicado: (2022) -
Identification of metabolic network models from incomplete high-throughput datasets
por: Berthoumieux, Sara, et al.
Publicado: (2011) -
Incomplete Region Estimation and Restoration of 3D Point Cloud Human Face Datasets
por: Uddin, Kutub, et al.
Publicado: (2022) -
Concerns about using a digital mask to safeguard patient privacy
por: Meeus, Matthieu, et al.
Publicado: (2023)