Cargando…
New Paradigm of Machine Learning (ML) in Personalized Oncology: Data Trimming for Squeezing More Biomarkers From Clinical Datasets
Autores principales: | Borisov, Nicolas, Buzdin, Anton |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650540/ https://www.ncbi.nlm.nih.gov/pubmed/31380288 http://dx.doi.org/10.3389/fonc.2019.00658 |
Ejemplares similares
-
Flexible Data Trimming Improves Performance of Global Machine Learning Methods in Omics-Based Personalized Oncology
por: Tkachev, Victor, et al.
Publicado: (2020) -
FLOating-Window Projective Separator (FloWPS): A Data Trimming Tool for Support Vector Machines (SVM) to Improve Robustness of the Classifier
por: Tkachev, Victor, et al.
Publicado: (2019) -
Pathway Instability Is an Effective New Mutation-Based Type of Cancer Biomarkers
por: Zolotovskaia, Marianna A., et al.
Publicado: (2019) -
Editorial: Next Generation Sequencing Based Diagnostic Approaches in Clinical Oncology
por: Buzdin, Anton, et al.
Publicado: (2021) -
Machine Learning Applicability for Classification of PAD/VCD Chemotherapy Response Using 53 Multiple Myeloma RNA Sequencing Profiles
por: Borisov, Nicolas, et al.
Publicado: (2021)