Cargando…

Transcriptomics of a KDELR1 knockout cell line reveals modulated cell adhesion properties

KDEL receptors (KDELRs) represent transmembrane proteins of the secretory pathway which regulate the retention of soluble ER-residents as well as retrograde and anterograde vesicle trafficking. In addition, KDELRs are involved in the regulation of cellular stress response and ECM degradation. For a...

Descripción completa

Detalles Bibliográficos
Autores principales: Blum, Andrea, Khalifa, Saleem, Nordström, Karl, Simon, Martin, Schulz, Marcel H., Schmitt, Manfred J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650600/
https://www.ncbi.nlm.nih.gov/pubmed/31337861
http://dx.doi.org/10.1038/s41598-019-47027-5
Descripción
Sumario:KDEL receptors (KDELRs) represent transmembrane proteins of the secretory pathway which regulate the retention of soluble ER-residents as well as retrograde and anterograde vesicle trafficking. In addition, KDELRs are involved in the regulation of cellular stress response and ECM degradation. For a deeper insight into KDELR1 specific functions, we characterised a KDELR1-KO cell line (HAP1) through whole transcriptome analysis by comparing KDELR1-KO cells with its respective HAP1 wild-type. Our data indicate more than 300 significantly and differentially expressed genes whose gene products are mainly involved in developmental processes such as cell adhesion and ECM composition, pointing out to severe cellular disorders due to a loss of KDELR1. Impaired adhesion capacity of KDELR1-KO cells was further demonstrated through in vitro adhesion assays, while collagen- and/or laminin-coating nearly doubled the adhesion property of KDELR1-KO cells compared to wild-type, confirming a transcriptional adaptation to improve or restore the cellular adhesion capability. Perturbations within the secretory pathway were verified by an increased secretion of ER-resident PDI and decreased cell viability under ER stress conditions, suggesting KDELR1-KO cells to be severely impaired in maintaining cellular homeostasis.