Cargando…
Molecular Inverse Comorbidity between Alzheimer’s Disease and Lung Cancer: New Insights from Matrix Factorization
Matrix factorization (MF) is an established paradigm for large-scale biological data analysis with tremendous potential in computational biology. Here, we challenge MF in depicting the molecular bases of epidemiologically described disease–disease (DD) relationships. As a use case, we focus on the i...
Autores principales: | Greco, Alessandro, Sanchez Valle, Jon, Pancaldi, Vera, Baudot, Anaïs, Barillot, Emmanuel, Caselle, Michele, Valencia, Alfonso, Zinovyev, Andrei, Cantini, Laura |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650839/ https://www.ncbi.nlm.nih.gov/pubmed/31247897 http://dx.doi.org/10.3390/ijms20133114 |
Ejemplares similares
-
Assessing reproducibility of matrix factorization methods in independent transcriptomes
por: Cantini, Laura, et al.
Publicado: (2019) -
Identification of microRNA clusters cooperatively acting on epithelial to mesenchymal transition in triple negative breast cancer
por: Cantini, Laura, et al.
Publicado: (2019) -
Determining the optimal number of independent components for reproducible transcriptomic data analysis
por: Kairov, Ulykbek, et al.
Publicado: (2017) -
Interpreting molecular similarity between patients as a determinant of disease comorbidity relationships
por: Sánchez-Valle, Jon, et al.
Publicado: (2020) -
Molecular Evidence for the Inverse Comorbidity between Central Nervous System Disorders and Cancers Detected by Transcriptomic Meta-analyses
por: Ibáñez, Kristina, et al.
Publicado: (2014)