Cargando…

Cross-Layer Routing for a Mobility Support Protocol Based on Handover Mechanism in Cluster-Based Wireless Sensor Networks with Mobile Sink

Wireless sensor networks with mobile collectors or sinks face some challenges regarding the data collection process and the continuous connectivity and delivering of data while the mobile sink is moving throughout the network. These challenges increase as the network grows. For this aim, we propose...

Descripción completa

Detalles Bibliográficos
Autores principales: Zahra, Maamar, Wang, Yulin, Ding, Wenjia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650861/
https://www.ncbi.nlm.nih.gov/pubmed/31247981
http://dx.doi.org/10.3390/s19132843
Descripción
Sumario:Wireless sensor networks with mobile collectors or sinks face some challenges regarding the data collection process and the continuous connectivity and delivering of data while the mobile sink is moving throughout the network. These challenges increase as the network grows. For this aim, we propose in this paper a cross-layer routing protocol which supports mobility for large-scale wireless sensor networks, which we name CLR-MSPH. We adapt CLR-MSPH for the hierarchical architecture of the network, and it performs on cluster-based wireless sensor networks where the network is organized in clusters. Our proposed protocol deals with the problem of handover data after the mobile sink leaves the radio range of cluster head without sending all data stored in the cluster head’s buffer. We also introduce a mobility model for the mobile sink for a better data collection process. CLR-MSPH is considered as an extending implementation of BMAC protocol with handover mechanism (BMAC-H). In order to prove the efficiency of the proposed protocol, we compare CLR-MSPH to BMAC-H, where we adapted BMAC-H to perform in cluster-based wireless sensor networks. The simulation results show that CLR-MSPH performs better than BMAC-H in terms of packets reception rate, energy, and latency.