Cargando…
A Deep Learning Approach for Maximum Activity Links in D2D Communications
Mobile cellular communications are experiencing an exponential growth in traffic load on Long Term Evolution (LTE) eNode B (eNB) components. Such load can be significantly contained by directly sharing content among nearby users through device-to-device (D2D) communications, so that repeated downloa...
Autores principales: | Yu, Bocheng, Zhang, Xingjun, Palmieri, Francesco, Creignou, Erwan, You, Ilsun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650897/ https://www.ncbi.nlm.nih.gov/pubmed/31277349 http://dx.doi.org/10.3390/s19132941 |
Ejemplares similares
-
Fairness-Aware Resource Allocation in Multi-Hop Wireless Powered Communication Networks with User Cooperation
por: Lei, Ming, et al.
Publicado: (2018) -
Decentralized Policy Coordination in Mobile Sensing with Consensual Communication
por: Zhang, Bolei, et al.
Publicado: (2022) -
Deep Reinforcement Learning Based Resource Allocation for D2D Communications Underlay Cellular Networks
por: Yu, Seoyoung, et al.
Publicado: (2022) -
Prediction of obstructive sleep apnea using deep learning in 3D craniofacial reconstruction
por: Zhang, Zishanbai, et al.
Publicado: (2022) -
Wireless Link Selection Methods for Maritime Communication Access Networks—A Deep Learning Approach
por: Hoeft, Michal, et al.
Publicado: (2022)