Cargando…
A Deep Learning Approach for Fusing Sensor Data from Screw Compressors
Chillers are commonly used for thermal regulation to maintain indoor comfort in medium and large buildings. However, inefficiencies in this process produce significant losses, and optimization tasks are limited because of accessibility to the system. Data analysis techniques transform measurements c...
Autores principales: | Alonso, Serafín, Pérez, Daniel, Morán, Antonio, Fuertes, Juan José, Díaz, Ignacio, Domínguez, Manuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651047/ https://www.ncbi.nlm.nih.gov/pubmed/31261637 http://dx.doi.org/10.3390/s19132868 |
Ejemplares similares
-
Feature Extraction from Building Submetering Networks Using Deep Learning
por: Morán, Antonio, et al.
Publicado: (2020) -
Proposal for the award of a contract for the revision of helium screw compressors
Publicado: (2003) -
FuseAD: Unsupervised Anomaly Detection in Streaming Sensors Data by Fusing Statistical and Deep Learning Models
por: Munir, Mohsin, et al.
Publicado: (2019) -
Compressors.
por: Jean-Luc Caron
Publicado: (1999) -
Compressors.
por: Jean-Luc Caron
Publicado: (1998)