Cargando…
Combining Inter-Subject Modeling with a Subject-Based Data Transformation to Improve Affect Recognition from EEG Signals
Existing correlations between features extracted from Electroencephalography (EEG) signals and emotional aspects have motivated the development of a diversity of EEG-based affect detection methods. Both intra-subject and inter-subject approaches have been used in this context. Intra-subject approach...
Autores principales: | Arevalillo-Herráez, Miguel, Cobos, Maximo, Roger, Sandra, García-Pineda, Miguel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651152/ https://www.ncbi.nlm.nih.gov/pubmed/31288378 http://dx.doi.org/10.3390/s19132999 |
Ejemplares similares
-
An Intra-Subject Approach Based on the Application of HMM to Predict Concentration in Educational Contexts from Nonintrusive Physiological Signals in Real-World Situations
por: Serrano-Mamolar, Ana, et al.
Publicado: (2021) -
Inter-subject correlations of EEG reflect subjective arousal and acoustic features of music
por: Ueno, Fuyu, et al.
Publicado: (2023) -
Image-Evoked Emotion Recognition for Hearing-Impaired Subjects with EEG Signals
por: Zhu, Mu, et al.
Publicado: (2023) -
EEG microstates associated with intra- and inter-subject alpha variability
por: Croce, Pierpaolo, et al.
Publicado: (2020) -
Exploring EEG Features in Cross-Subject Emotion Recognition
por: Li, Xiang, et al.
Publicado: (2018)