Cargando…
Mapping Neural Networks to FPGA-Based IoT Devices for Ultra-Low Latency Processing
Internet of things (IoT) infrastructure, fast access to knowledge becomes critical. In some application domains, such as robotics, autonomous driving, predictive maintenance, and anomaly detection, the response time of the system is more critical to ensure Quality of Service than the quality of the...
Autores principales: | Wielgosz, Maciej, Karwatowski, Michał |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651173/ https://www.ncbi.nlm.nih.gov/pubmed/31284516 http://dx.doi.org/10.3390/s19132981 |
Ejemplares similares
-
Pattern Classification Using Quantized Neural Networks for FPGA-Based Low-Power IoT Devices
por: Biswal, Manas Ranjan, et al.
Publicado: (2022) -
Review of State-of-the-Art FPGA Applications in IoT Networks
por: Magyari, Alexander, et al.
Publicado: (2022) -
Reconfigurable Security Architecture (RESA) Based on PUF for FPGA-Based IoT Devices
por: Babaei, Armin, et al.
Publicado: (2022) -
An On-Demand TDMA Approach Optimized for Low-Latency IoT Applications
por: Prapas, Antonios, et al.
Publicado: (2022) -
IoTNet: An Efficient and Accurate Convolutional Neural Network for IoT Devices
por: Lawrence, Tom, et al.
Publicado: (2019)