Cargando…
An AutoEncoder and LSTM-Based Traffic Flow Prediction Method
Smart cities can effectively improve the quality of urban life. Intelligent Transportation System (ITS) is an important part of smart cities. The accurate and real-time prediction of traffic flow plays an important role in ITSs. To improve the prediction accuracy, we propose a novel traffic flow pre...
Autores principales: | Wei, Wangyang, Wu, Honghai, Ma, Huadong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651253/ https://www.ncbi.nlm.nih.gov/pubmed/31277390 http://dx.doi.org/10.3390/s19132946 |
Ejemplares similares
-
Quantum Variational AutoEncoder
por: Vinci, Walter
Publicado: (2018) -
Prediction model of sparse autoencoder-based bidirectional LSTM for wastewater flow rate
por: Huang, Jianying, et al.
Publicado: (2022) -
Road-Type Classification with Deep AutoEncoder
por: Molefe, Mohale E., et al.
Publicado: (2023) -
Video Anomaly Detection Based on Convolutional Recurrent AutoEncoder
por: Wang, Bokun, et al.
Publicado: (2022) -
Benchmarking variational AutoEncoders on cancer transcriptomics data
por: Eltager, Mostafa, et al.
Publicado: (2023)