Cargando…

Inversion of Lake Bathymetry through Integrating Multi-Temporal Landsat and ICESat Imagery

Lake bathymetry provides valuable information for lake basin planning and treatment, lake watershed erosion and siltation management, water resource planning, and environmental protection. Lake bathymetry has been surveyed with sounding techniques, including single-beam and multi-beam sonar sounding...

Descripción completa

Detalles Bibliográficos
Autores principales: Long, Yuannan, Yan, Shixiong, Jiang, Changbo, Wu, Changshan, Tang, Rong, Hu, Shixiong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651279/
https://www.ncbi.nlm.nih.gov/pubmed/31261991
http://dx.doi.org/10.3390/s19132896
Descripción
Sumario:Lake bathymetry provides valuable information for lake basin planning and treatment, lake watershed erosion and siltation management, water resource planning, and environmental protection. Lake bathymetry has been surveyed with sounding techniques, including single-beam and multi-beam sonar sounding, and unmanned ship sounding. Although these techniques have high accuracy, most of them require long survey cycles and entail a high degree of difficulty. On the contrary, optical remote sensing inversion methods are easy to implement, but tend to provide less accurate bathymetry measures, especially when applied to turbid waters. The present study, therefore, aims to improve the accuracy of bathymetry measurements through integrating Landsat Thematic Mapper imagery, the Ice, Cloud, and Land Elevation Satellite’s Geoscience Laser Altimeter System (ICESat/GLAS) data, and water level data measured at hydrological stations. First, the boundaries of a lake at multiple dates were derived using water extraction, initial boundary extraction, and Landsat Thematic Mapper/Enhanced Thematic Mapper (TM/ETM+) strip removal processing techniques. Second, ICESat/GLAS data were introduced to obtain additional topographic information of a lake. The striped topography of a lake’s area was then obtained through eliminating and correcting erroneous points and interpolating the values of unknown points. Third, the entire bathymetry of the lake was obtained through interpolating water level values of lake boundary points in various dates. Experiments show that accurate bathymetry (±1 m) can be successfully derived.