Cargando…

An Efficient Extended Targets Detection Framework Based on Sampling and Spatio-Temporal Detection

Excellent performance, real-time and low memory requirement are three vital requirements for target detection in high resolution marine radar system. Unfortunately, many current state-of-the-art methods merely achieve excellent performance when coping with highly complex scenes. In fact, a common pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Bo, Xu, Na, Zhao, Wenbo, Li, Muqing, Xu, Luping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651372/
https://www.ncbi.nlm.nih.gov/pubmed/31266216
http://dx.doi.org/10.3390/s19132912
Descripción
Sumario:Excellent performance, real-time and low memory requirement are three vital requirements for target detection in high resolution marine radar system. Unfortunately, many current state-of-the-art methods merely achieve excellent performance when coping with highly complex scenes. In fact, a common problem is that real-time processing, low memory requirement and remarkable detection ability are difficult to coordinate. To address this issue, we propose a novel detection framework which bases its principle on sampling and spatiotemporal detection. The framework consists of two stages, coarse detection and fine detection. Sampling-based coarse detection is designed to guarantee the real-time processing and low memory requirements by locating the area where targets may exist in advance. Different from former detection methods, multi-scan video data are utilized. In the stage of fine detection, the candidate areas are grouped into three categories: single target, dense targets and sea clutter. Different approaches for processing the different categories are implemented to achieve excellent performance. The superiority of the proposed framework beyond state-of-the-art baselines is well substantiated in this work. Low memory requirement of the proposed framework was verified by theoretical analysis. Real-time processing capability was verified by the video data of two real scenarios. Synthetic data were tested to show the improvement in tracking performance by using the proposed detection framework.