Cargando…
Effect of Different Proportions of Three Microbial Agents on Ammonia Mitigation during the Composting of Layer Manure
Odor emissions represent one of the important issues of aerobic composting. The addition of microbial agents to compost is an important method for solving this problem, but this process is often unstable when a single microbial agent is added to the compost. Therefore, in this study, five treatments...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651566/ https://www.ncbi.nlm.nih.gov/pubmed/31324049 http://dx.doi.org/10.3390/molecules24132513 |
_version_ | 1783438376905474048 |
---|---|
author | Zhou, Shizheng Zhang, Xinyi Liao, Xindi Wu, Yinbao Mi, Jiandui Wang, Yan |
author_facet | Zhou, Shizheng Zhang, Xinyi Liao, Xindi Wu, Yinbao Mi, Jiandui Wang, Yan |
author_sort | Zhou, Shizheng |
collection | PubMed |
description | Odor emissions represent one of the important issues of aerobic composting. The addition of microbial agents to compost is an important method for solving this problem, but this process is often unstable when a single microbial agent is added to the compost. Therefore, in this study, five treatments comprising different proportions of Bacillus stearothermophilus, Candida utilis, and Bacillus subtilis were tested to determine the best combination of the three microbial agents for ammonia reduction, as follows: control group (CK), 2:1:1 (A), 1:1:2 (B), 1:2:1 (C), and 1:1:1 (D). Compared with the CK group, the A, B, C, and D groups reduced ammonia emissions by 17.02, 9.68, 53.11, and 46.23%, respectively. The total ammonia emissions were significantly lower in C and D than in CK (p < 0.05). These two treatment groups had significantly increased nitrate nitrogen concentrations and decreased pH values and ammonium nitrogen concentrations (p < 0.05). Throughout the composting process, the total bacterial number was significantly higher in C and D than in CK (p < 0.05). Therefore, it is likely that B. stearothermophilus, C. utilis, and B. subtilis compounded from 1:2:1 (C) to 1:1:1 (D) reduced the ammonia emissions due to (1) a reduction in the pH and (2) the promotion of the growth of ammonia-oxidizing bacteria and the conversion of ammonium nitrogen to nitrate nitrogen. This study provides a theoretical basis and technical support for the odor problem of layer manure compost and promotes the development of composting technology. |
format | Online Article Text |
id | pubmed-6651566 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-66515662019-08-08 Effect of Different Proportions of Three Microbial Agents on Ammonia Mitigation during the Composting of Layer Manure Zhou, Shizheng Zhang, Xinyi Liao, Xindi Wu, Yinbao Mi, Jiandui Wang, Yan Molecules Article Odor emissions represent one of the important issues of aerobic composting. The addition of microbial agents to compost is an important method for solving this problem, but this process is often unstable when a single microbial agent is added to the compost. Therefore, in this study, five treatments comprising different proportions of Bacillus stearothermophilus, Candida utilis, and Bacillus subtilis were tested to determine the best combination of the three microbial agents for ammonia reduction, as follows: control group (CK), 2:1:1 (A), 1:1:2 (B), 1:2:1 (C), and 1:1:1 (D). Compared with the CK group, the A, B, C, and D groups reduced ammonia emissions by 17.02, 9.68, 53.11, and 46.23%, respectively. The total ammonia emissions were significantly lower in C and D than in CK (p < 0.05). These two treatment groups had significantly increased nitrate nitrogen concentrations and decreased pH values and ammonium nitrogen concentrations (p < 0.05). Throughout the composting process, the total bacterial number was significantly higher in C and D than in CK (p < 0.05). Therefore, it is likely that B. stearothermophilus, C. utilis, and B. subtilis compounded from 1:2:1 (C) to 1:1:1 (D) reduced the ammonia emissions due to (1) a reduction in the pH and (2) the promotion of the growth of ammonia-oxidizing bacteria and the conversion of ammonium nitrogen to nitrate nitrogen. This study provides a theoretical basis and technical support for the odor problem of layer manure compost and promotes the development of composting technology. MDPI 2019-07-09 /pmc/articles/PMC6651566/ /pubmed/31324049 http://dx.doi.org/10.3390/molecules24132513 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhou, Shizheng Zhang, Xinyi Liao, Xindi Wu, Yinbao Mi, Jiandui Wang, Yan Effect of Different Proportions of Three Microbial Agents on Ammonia Mitigation during the Composting of Layer Manure |
title | Effect of Different Proportions of Three Microbial Agents on Ammonia Mitigation during the Composting of Layer Manure |
title_full | Effect of Different Proportions of Three Microbial Agents on Ammonia Mitigation during the Composting of Layer Manure |
title_fullStr | Effect of Different Proportions of Three Microbial Agents on Ammonia Mitigation during the Composting of Layer Manure |
title_full_unstemmed | Effect of Different Proportions of Three Microbial Agents on Ammonia Mitigation during the Composting of Layer Manure |
title_short | Effect of Different Proportions of Three Microbial Agents on Ammonia Mitigation during the Composting of Layer Manure |
title_sort | effect of different proportions of three microbial agents on ammonia mitigation during the composting of layer manure |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651566/ https://www.ncbi.nlm.nih.gov/pubmed/31324049 http://dx.doi.org/10.3390/molecules24132513 |
work_keys_str_mv | AT zhoushizheng effectofdifferentproportionsofthreemicrobialagentsonammoniamitigationduringthecompostingoflayermanure AT zhangxinyi effectofdifferentproportionsofthreemicrobialagentsonammoniamitigationduringthecompostingoflayermanure AT liaoxindi effectofdifferentproportionsofthreemicrobialagentsonammoniamitigationduringthecompostingoflayermanure AT wuyinbao effectofdifferentproportionsofthreemicrobialagentsonammoniamitigationduringthecompostingoflayermanure AT mijiandui effectofdifferentproportionsofthreemicrobialagentsonammoniamitigationduringthecompostingoflayermanure AT wangyan effectofdifferentproportionsofthreemicrobialagentsonammoniamitigationduringthecompostingoflayermanure |