Cargando…

Modification of Ti6Al4V Titanium Alloy Surface Layer in the Ozone Atmosphere

The paper reports the results of a study on the Ti6Al4V titanium alloy involving the XPS (X-ray photoelectron spectroscopy) photoelectron spectroscopy method. The position of bands in the viewing spectrum serves as a basis for the qualitative identification of atoms forming the surface layer, while...

Descripción completa

Detalles Bibliográficos
Autores principales: Kłonica, Mariusz, Kuczmaszewski, Józef
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651573/
https://www.ncbi.nlm.nih.gov/pubmed/31262030
http://dx.doi.org/10.3390/ma12132113
Descripción
Sumario:The paper reports the results of a study on the Ti6Al4V titanium alloy involving the XPS (X-ray photoelectron spectroscopy) photoelectron spectroscopy method. The position of bands in the viewing spectrum serves as a basis for the qualitative identification of atoms forming the surface layer, while their intensity is used to calculate the aggregate concentration of these atoms in the analyzed layer. High-resolution spectra are used to determine the type of chemical bonds based on characteristic numerical values of the chemical shift. The paper also presents the 3D results of surface roughness measurements obtained from optical profiling, as well as the results of energy state measurements of the Ti6Al4V titanium alloy surface layer after ozone treatment. It was shown that the ozone treatment of the Ti6Al4V titanium alloy removes carbon and increases concentrations of Ti and V ions at higher oxidation states at the expense of metal atoms and lower valence ions. The modification of the surface layer in ozone atmosphere caused a 30% increase in the Ti element concentration in the surface layer compared to the samples prior to ozone treatment. The carbon removal rate from the Ti6Al4V titanium alloy samples amounted to 35%, and a 13% increase was noted in oxides. The tests proved that the value of the surface free energy of the Ti6Al4V titanium alloy increased as a result of ozone treatment. The highest increase in the surface free energy was observed for Variant 4 samples, and amounted to 17% compared to the untreated samples, while the lowest increase was equal to 14%. For the analyzed data, the maximum value of standard deviation was 0.99 [mJ/m(2)].