Cargando…
A Novel Deep-Learning-Based Bug Severity Classification Technique Using Convolutional Neural Networks and Random Forest with Boosting
The accurate severity classification of a bug report is an important aspect of bug fixing. The bug reports are submitted into the bug tracking system with high speed, and owing to this, bug repository size has been increasing at an enormous rate. This increased bug repository size introduces biases...
Autores principales: | Kukkar, Ashima, Mohana, Rajni, Nayyar, Anand, Kim, Jeamin, Kang, Byeong-Gwon, Chilamkurti, Naveen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651582/ https://www.ncbi.nlm.nih.gov/pubmed/31284398 http://dx.doi.org/10.3390/s19132964 |
Ejemplares similares
-
Improvise approach for respiratory pathologies classification with multilayer convolutional neural networks
por: Borwankar, Saumya, et al.
Publicado: (2022) -
Automated Truck Taxonomy Classification Using Deep Convolutional Neural Networks
por: Almutairi, Abdullah, et al.
Publicado: (2022) -
Integration of Random Forest Classifiers and Deep Convolutional Neural Networks for Classification and Biomolecular Modeling of Cancer Driver Mutations
por: Agajanian, Steve, et al.
Publicado: (2019) -
Gas Classification Using Deep Convolutional Neural Networks
por: Peng, Pai, et al.
Publicado: (2018) -
AdaBoost based Random forest model for Emotion classification of Facial images
por: Gubbala, Kumari, et al.
Publicado: (2023)