Cargando…
Lactoferrin-Hydroxyapatite Containing Spongy-Like Hydrogels for Bone Tissue Engineering
The development of bioactive and cell-responsive materials has fastened the field of bone tissue engineering. Gellan gum (GG) spongy-like hydrogels present high attractive properties for the tissue engineering field, especially due to their wide microarchitecture and tunable mechanical properties, a...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651619/ https://www.ncbi.nlm.nih.gov/pubmed/31252675 http://dx.doi.org/10.3390/ma12132074 |
_version_ | 1783438389287059456 |
---|---|
author | Bastos, Ana R. da Silva, Lucília P. Maia, F. Raquel Pina, Sandra Rodrigues, Tânia Sousa, Filipa Oliveira, Joaquim M. Cornish, Jillian Correlo, Vitor M. Reis, Rui L. |
author_facet | Bastos, Ana R. da Silva, Lucília P. Maia, F. Raquel Pina, Sandra Rodrigues, Tânia Sousa, Filipa Oliveira, Joaquim M. Cornish, Jillian Correlo, Vitor M. Reis, Rui L. |
author_sort | Bastos, Ana R. |
collection | PubMed |
description | The development of bioactive and cell-responsive materials has fastened the field of bone tissue engineering. Gellan gum (GG) spongy-like hydrogels present high attractive properties for the tissue engineering field, especially due to their wide microarchitecture and tunable mechanical properties, as well as their ability to entrap the responsive cells. Lactoferrin (Lf) and Hydroxyapatite (HAp) are bioactive factors that are known to potentiate faster bone regeneration. Thus, we developed an advanced three-dimensional (3D) biomaterial by integrating these bioactive factors within GG spongy-like hydrogels. Lf-HAp spongy-like hydrogels were characterized in terms of microstructure, water uptake, degradation, and concomitant release of Lf along the time. Human adipose-derived stem cells (hASCs) were seeded and the capacity of these materials to support hASCs in culture for 21 days was assessed. Lf addition within GG spongy-like hydrogels did not change the main features of GG spongy-like hydrogels in terms of porosity, pore size, degradation, and water uptake commitment. Nevertheless, HAp addition promoted an increase of the pore wall thickness (from ~13 to 28 µm) and a decrease on porosity (from ~87% to 64%) and mean pore size (from ~12 to 20 µm), as well as on the degradability and water retention capabilities. A sustained release of Lf was observed for all the formulations up to 30 days. Cell viability assays showed that hASCs were viable during the culture period regarding cell-laden spongy-like hydrogels. Altogether, we demonstrate that GG spongy-like hydrogels containing HAp and Lf in high concentrations gathered favorable 3D bone-like microenvironment with an increased hASCs viability with the presented results. |
format | Online Article Text |
id | pubmed-6651619 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-66516192019-08-08 Lactoferrin-Hydroxyapatite Containing Spongy-Like Hydrogels for Bone Tissue Engineering Bastos, Ana R. da Silva, Lucília P. Maia, F. Raquel Pina, Sandra Rodrigues, Tânia Sousa, Filipa Oliveira, Joaquim M. Cornish, Jillian Correlo, Vitor M. Reis, Rui L. Materials (Basel) Article The development of bioactive and cell-responsive materials has fastened the field of bone tissue engineering. Gellan gum (GG) spongy-like hydrogels present high attractive properties for the tissue engineering field, especially due to their wide microarchitecture and tunable mechanical properties, as well as their ability to entrap the responsive cells. Lactoferrin (Lf) and Hydroxyapatite (HAp) are bioactive factors that are known to potentiate faster bone regeneration. Thus, we developed an advanced three-dimensional (3D) biomaterial by integrating these bioactive factors within GG spongy-like hydrogels. Lf-HAp spongy-like hydrogels were characterized in terms of microstructure, water uptake, degradation, and concomitant release of Lf along the time. Human adipose-derived stem cells (hASCs) were seeded and the capacity of these materials to support hASCs in culture for 21 days was assessed. Lf addition within GG spongy-like hydrogels did not change the main features of GG spongy-like hydrogels in terms of porosity, pore size, degradation, and water uptake commitment. Nevertheless, HAp addition promoted an increase of the pore wall thickness (from ~13 to 28 µm) and a decrease on porosity (from ~87% to 64%) and mean pore size (from ~12 to 20 µm), as well as on the degradability and water retention capabilities. A sustained release of Lf was observed for all the formulations up to 30 days. Cell viability assays showed that hASCs were viable during the culture period regarding cell-laden spongy-like hydrogels. Altogether, we demonstrate that GG spongy-like hydrogels containing HAp and Lf in high concentrations gathered favorable 3D bone-like microenvironment with an increased hASCs viability with the presented results. MDPI 2019-06-27 /pmc/articles/PMC6651619/ /pubmed/31252675 http://dx.doi.org/10.3390/ma12132074 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bastos, Ana R. da Silva, Lucília P. Maia, F. Raquel Pina, Sandra Rodrigues, Tânia Sousa, Filipa Oliveira, Joaquim M. Cornish, Jillian Correlo, Vitor M. Reis, Rui L. Lactoferrin-Hydroxyapatite Containing Spongy-Like Hydrogels for Bone Tissue Engineering |
title | Lactoferrin-Hydroxyapatite Containing Spongy-Like Hydrogels for Bone Tissue Engineering |
title_full | Lactoferrin-Hydroxyapatite Containing Spongy-Like Hydrogels for Bone Tissue Engineering |
title_fullStr | Lactoferrin-Hydroxyapatite Containing Spongy-Like Hydrogels for Bone Tissue Engineering |
title_full_unstemmed | Lactoferrin-Hydroxyapatite Containing Spongy-Like Hydrogels for Bone Tissue Engineering |
title_short | Lactoferrin-Hydroxyapatite Containing Spongy-Like Hydrogels for Bone Tissue Engineering |
title_sort | lactoferrin-hydroxyapatite containing spongy-like hydrogels for bone tissue engineering |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651619/ https://www.ncbi.nlm.nih.gov/pubmed/31252675 http://dx.doi.org/10.3390/ma12132074 |
work_keys_str_mv | AT bastosanar lactoferrinhydroxyapatitecontainingspongylikehydrogelsforbonetissueengineering AT dasilvaluciliap lactoferrinhydroxyapatitecontainingspongylikehydrogelsforbonetissueengineering AT maiafraquel lactoferrinhydroxyapatitecontainingspongylikehydrogelsforbonetissueengineering AT pinasandra lactoferrinhydroxyapatitecontainingspongylikehydrogelsforbonetissueengineering AT rodriguestania lactoferrinhydroxyapatitecontainingspongylikehydrogelsforbonetissueengineering AT sousafilipa lactoferrinhydroxyapatitecontainingspongylikehydrogelsforbonetissueengineering AT oliveirajoaquimm lactoferrinhydroxyapatitecontainingspongylikehydrogelsforbonetissueengineering AT cornishjillian lactoferrinhydroxyapatitecontainingspongylikehydrogelsforbonetissueengineering AT correlovitorm lactoferrinhydroxyapatitecontainingspongylikehydrogelsforbonetissueengineering AT reisruil lactoferrinhydroxyapatitecontainingspongylikehydrogelsforbonetissueengineering |