Cargando…
Local Interpretable Model-Agnostic Explanations for Classification of Lymph Node Metastases
An application of explainable artificial intelligence on medical data is presented. There is an increasing demand in machine learning literature for such explainable models in health-related applications. This work aims to generate explanations on how a Convolutional Neural Network (CNN) detects tum...
Autores principales: | Palatnik de Sousa, Iam, Maria Bernardes Rebuzzi Vellasco, Marley, Costa da Silva, Eduardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651753/ https://www.ncbi.nlm.nih.gov/pubmed/31284419 http://dx.doi.org/10.3390/s19132969 |
Ejemplares similares
-
Explainable Artificial Intelligence for Bias Detection in COVID CT-Scan Classifiers
por: Palatnik de Sousa, Iam, et al.
Publicado: (2021) -
Development of a classification model for Cynanchum wilfordii and Cynanchum auriculatum using convolutional neural network and local interpretable model-agnostic explanation technology
por: Jung, Dae-Hyun, et al.
Publicado: (2023) -
Model agnostic generation of counterfactual explanations for molecules
por: Wellawatte, Geemi P., et al.
Publicado: (2022) -
Detection of COVID-19 findings by the local interpretable model-agnostic explanations method of types-based activations extracted from CNNs
por: Toğaçar, Mesut, et al.
Publicado: (2022) -
Convolutional ensembles for Arabic Handwritten Character and Digit Recognition
por: Palatnik de Sousa, Iam
Publicado: (2018)