Cargando…
Experimental Study on the Effects of Vegetation on the Dissipation of Supersaturated Total Dissolved Gas in Flowing Water
High dam discharge can lead to total dissolved gas (TDG) supersaturation in the downstream river, and fish in the TDG-supersaturated flow can suffer from bubble disease and even die. Consequently, it is of great value to study the transport and dissipation characteristics of supersaturated dissolved...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651792/ https://www.ncbi.nlm.nih.gov/pubmed/31247935 http://dx.doi.org/10.3390/ijerph16132256 |
_version_ | 1783438426546110464 |
---|---|
author | Wang, Zhenhua Lu, Jingying Yuan, Youquan Huang, Yinghan Feng, Jingjie Li, Ran |
author_facet | Wang, Zhenhua Lu, Jingying Yuan, Youquan Huang, Yinghan Feng, Jingjie Li, Ran |
author_sort | Wang, Zhenhua |
collection | PubMed |
description | High dam discharge can lead to total dissolved gas (TDG) supersaturation in the downstream river, and fish in the TDG-supersaturated flow can suffer from bubble disease and even die. Consequently, it is of great value to study the transport and dissipation characteristics of supersaturated dissolved gas for the protection of river fish. Floodplains may form downstream of high dams due to flood discharge, and the plants on these floodplains can affect both the hydraulic characteristics and TDG transport of the flowing water. In this study, the velocity distribution and the retention response time under different flow conditions and vegetation arrangements were studied in a series of experiments. The retention time was significantly extended by the presence of vegetation, and an empirical formula for calculating the retention time was proposed. In addition, the responses of the dissipation process of supersaturated TDG to hydraulic factors, retention time, and vegetation area coefficient were analyzed. The dissipation of supersaturated TDG significantly increased with increases in the vegetation area coefficient in the water. To quantitatively describe the TDG dissipation process in TDG-supersaturated flow under the effect of vegetation, the TDG dissipation coefficient was fitted and analyzed. The basic form of the formula for the dissipation coefficient involving various influence factors was determined by dimensional analysis. An equation for calculating the TDG dissipation coefficient of flowing water with vegetation was proposed by multivariate nonlinear fitting and was proven to have great prediction accuracy. The calculated method developed in this paper can be used to predict TDG dissipation in flowing water with vegetation and is of great significance for enriching TDG prediction systems. |
format | Online Article Text |
id | pubmed-6651792 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-66517922019-08-08 Experimental Study on the Effects of Vegetation on the Dissipation of Supersaturated Total Dissolved Gas in Flowing Water Wang, Zhenhua Lu, Jingying Yuan, Youquan Huang, Yinghan Feng, Jingjie Li, Ran Int J Environ Res Public Health Article High dam discharge can lead to total dissolved gas (TDG) supersaturation in the downstream river, and fish in the TDG-supersaturated flow can suffer from bubble disease and even die. Consequently, it is of great value to study the transport and dissipation characteristics of supersaturated dissolved gas for the protection of river fish. Floodplains may form downstream of high dams due to flood discharge, and the plants on these floodplains can affect both the hydraulic characteristics and TDG transport of the flowing water. In this study, the velocity distribution and the retention response time under different flow conditions and vegetation arrangements were studied in a series of experiments. The retention time was significantly extended by the presence of vegetation, and an empirical formula for calculating the retention time was proposed. In addition, the responses of the dissipation process of supersaturated TDG to hydraulic factors, retention time, and vegetation area coefficient were analyzed. The dissipation of supersaturated TDG significantly increased with increases in the vegetation area coefficient in the water. To quantitatively describe the TDG dissipation process in TDG-supersaturated flow under the effect of vegetation, the TDG dissipation coefficient was fitted and analyzed. The basic form of the formula for the dissipation coefficient involving various influence factors was determined by dimensional analysis. An equation for calculating the TDG dissipation coefficient of flowing water with vegetation was proposed by multivariate nonlinear fitting and was proven to have great prediction accuracy. The calculated method developed in this paper can be used to predict TDG dissipation in flowing water with vegetation and is of great significance for enriching TDG prediction systems. MDPI 2019-06-26 2019-07 /pmc/articles/PMC6651792/ /pubmed/31247935 http://dx.doi.org/10.3390/ijerph16132256 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Zhenhua Lu, Jingying Yuan, Youquan Huang, Yinghan Feng, Jingjie Li, Ran Experimental Study on the Effects of Vegetation on the Dissipation of Supersaturated Total Dissolved Gas in Flowing Water |
title | Experimental Study on the Effects of Vegetation on the Dissipation of Supersaturated Total Dissolved Gas in Flowing Water |
title_full | Experimental Study on the Effects of Vegetation on the Dissipation of Supersaturated Total Dissolved Gas in Flowing Water |
title_fullStr | Experimental Study on the Effects of Vegetation on the Dissipation of Supersaturated Total Dissolved Gas in Flowing Water |
title_full_unstemmed | Experimental Study on the Effects of Vegetation on the Dissipation of Supersaturated Total Dissolved Gas in Flowing Water |
title_short | Experimental Study on the Effects of Vegetation on the Dissipation of Supersaturated Total Dissolved Gas in Flowing Water |
title_sort | experimental study on the effects of vegetation on the dissipation of supersaturated total dissolved gas in flowing water |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651792/ https://www.ncbi.nlm.nih.gov/pubmed/31247935 http://dx.doi.org/10.3390/ijerph16132256 |
work_keys_str_mv | AT wangzhenhua experimentalstudyontheeffectsofvegetationonthedissipationofsupersaturatedtotaldissolvedgasinflowingwater AT lujingying experimentalstudyontheeffectsofvegetationonthedissipationofsupersaturatedtotaldissolvedgasinflowingwater AT yuanyouquan experimentalstudyontheeffectsofvegetationonthedissipationofsupersaturatedtotaldissolvedgasinflowingwater AT huangyinghan experimentalstudyontheeffectsofvegetationonthedissipationofsupersaturatedtotaldissolvedgasinflowingwater AT fengjingjie experimentalstudyontheeffectsofvegetationonthedissipationofsupersaturatedtotaldissolvedgasinflowingwater AT liran experimentalstudyontheeffectsofvegetationonthedissipationofsupersaturatedtotaldissolvedgasinflowingwater |