Cargando…
New Perspectives in the Use of Biomaterials for Periodontal Regeneration
Periodontitis is a disease with a high prevalence among adults. If not treated, it can lead to loss of teeth. Periodontal therapy aims at maintaining patient’s teeth through infection control and correction of non-maintainable anatomies including—when possible—regeneration of lost periodontal tissue...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651816/ https://www.ncbi.nlm.nih.gov/pubmed/31288437 http://dx.doi.org/10.3390/ma12132197 |
Sumario: | Periodontitis is a disease with a high prevalence among adults. If not treated, it can lead to loss of teeth. Periodontal therapy aims at maintaining patient’s teeth through infection control and correction of non-maintainable anatomies including—when possible—regeneration of lost periodontal tissues. The biological regenerative potential of the periodontium is high, and several biomaterials can be utilized to improve the outcome of periodontal therapy. Use of different natural and synthetic materials in the periodontal field has been studied for many years. The main materials used today in periodontology analyzed in this review are: Resorbable and non-resorbable barrier membranes; autogenous, allogeneic, xenogeneic, and alloplastic bone substitutes; biological agents, such as amelogenins; platelet-derived growth factor; bone morphogenic proteins; rh fibroblast growth factor 2; teriparatide hormone; platelet concentrates; and 3D scaffolds. With the development of new surgical techniques some concepts on periodontal regeneration that were strictly applied in the past seem to be not so critical today. This can have an impact on the materials that are needed when attempting to regenerate lost periodontal structures. This review aims at presenting a rationale behind the use of biomaterials in modern periodontal regeneration |
---|