Cargando…

Genome Wide Association Study of Karnal Bunt Resistance in a Wheat Germplasm Collection from Afghanistan

Karnal bunt disease of wheat, caused by the fungus Neovossia indica, is one of the most important challenges to the grain industry as it affects the grain quality and also restricts the international movement of infected grain. It is a seed-, soil- and airborne disease with limited effect of chemica...

Descripción completa

Detalles Bibliográficos
Autores principales: Gupta, Vikas, He, Xinyao, Kumar, Naresh, Fuentes-Davila, Guillermo, Sharma, Rajiv K., Dreisigacker, Susanne, Juliana, Philomin, Ataei, Najibeh, Singh, Pawan K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651844/
https://www.ncbi.nlm.nih.gov/pubmed/31247965
http://dx.doi.org/10.3390/ijms20133124
Descripción
Sumario:Karnal bunt disease of wheat, caused by the fungus Neovossia indica, is one of the most important challenges to the grain industry as it affects the grain quality and also restricts the international movement of infected grain. It is a seed-, soil- and airborne disease with limited effect of chemical control. Currently, this disease is contained through the deployment of host resistance but further improvement is limited as only a few genotypes have been found to carry partial resistance. To identify genomic regions responsible for resistance in a set of 339 wheat accessions, genome-wide association study (GWAS) was undertaken using the DArTSeq(®) technology, in which 18 genomic regions for Karnal bunt resistance were identified, explaining 5–20% of the phenotypic variation. The identified quantitative trait loci (QTL) on chromosome 2BL showed consistently significant effects across all four experiments, whereas another QTL on 5BL was significant in three experiments. Additional QTLs were mapped on chromosomes 1DL, 2DL, 4AL, 5AS, 6BL, 6BS, 7BS and 7DL that have not been mapped previously, and on chromosomes 4B, 5AL, 5BL and 6BS, which have been reported in previous studies. Germplasm with less than 1% Karnal bunt infection have been identified and can be used for resistance breeding. The SNP markers linked to the genomic regions conferring resistance to Karnal bunt could be used to improve Karnal bunt resistance through marker-assisted selection.