Cargando…
IL-35 alleviates inflammation progression in a rat model of diabetic neuropathic pain via inhibition of JNK signaling
BACKGROUND: Emerging evidence has demonstrated that inflammation is involved in the occurrence and development of diabetic neuropathic pain (DNP). The anti-inflammatory property of interleukin (IL)-35 makes it a promising candidate to block the pain perception. The present study was undertaken to in...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651949/ https://www.ncbi.nlm.nih.gov/pubmed/31367192 http://dx.doi.org/10.1186/s12950-019-0217-z |
Sumario: | BACKGROUND: Emerging evidence has demonstrated that inflammation is involved in the occurrence and development of diabetic neuropathic pain (DNP). The anti-inflammatory property of interleukin (IL)-35 makes it a promising candidate to block the pain perception. The present study was undertaken to investigate whether IL-35 could attenuate DNP in streptozotocin (STZ)-induced rat model and its potential mechanism. METHODS: The rat model of DNP was established by a single STZ injection followed by measurements of fasting blood glucose and insulin. Fourteen days after STZ injection, DNP rats were intrathecally injected with IL-35, c-Jun N-terminal kinase (JNK) inhibitor or activator or dimethylsulfoxide (DMSO) as vehicle control, respectively. The mechanical allodynia was assayed to evaluate the therapeutic effect of IL-35. In mechanism study, the serum and protein levels of inflammatory cytokines using ELISA and western blotting and the activation of JNK signaling were further evaluated by quantitative reverse transcription PCR (qRT-PCR). Histopathologic changes were evaluated by Nissl staining. Apoptosis was examined using TUNEL staining. RESULTS: DNP rats exhibited increased fasting blood glucose and insulin levels and reduced insulin sensitivity index (ISI). Intrathecal injection of IL-35 reduced accumulation of pro-inflammatory cytokines in the spinal cord of DNP rats. Furthermore, IL-35 displayed anti-inflammatory and anti-apoptotic effects via inhibition of JNK pathway. CONCLUSION: IL-35 treatment mitigated DNP via downregulating JNK signaling pathway. |
---|