Cargando…
A clustering approach for detecting implausible observation values in electronic health records data
BACKGROUND: Identifying implausible clinical observations (e.g., laboratory test and vital sign values) in Electronic Health Record (EHR) data using rule-based procedures is challenging. Anomaly/outlier detection methods can be applied as an alternative algorithmic approach to flagging such implausi...
Autores principales: | Estiri, Hossein, Klann, Jeffrey G., Murphy, Shawn N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6652024/ https://www.ncbi.nlm.nih.gov/pubmed/31337390 http://dx.doi.org/10.1186/s12911-019-0852-6 |
Ejemplares similares
-
A broadly applicable approach to enrich electronic-health-record cohorts by identifying patients with complete data: a multisite evaluation
por: Klann, Jeffrey G, et al.
Publicado: (2023) -
Predicting COVID-19 mortality with electronic medical records
por: Estiri, Hossein, et al.
Publicado: (2021) -
Towards stroke prediction using electronic health records
por: Teoh, Douglas
Publicado: (2018) -
Monitoring prescribing patterns using regression and electronic health records
por: Backenroth, Daniel, et al.
Publicado: (2017) -
Spatial cluster detection using dynamic programming
por: Sverchkov, Yuriy, et al.
Publicado: (2012)