Cargando…
Hybrid Deep Neural Network Scheduler for Job-Shop Problem Based on Convolution Two-Dimensional Transformation
In this paper, a hybrid deep neural network scheduler (HDNNS) is proposed to solve job-shop scheduling problems (JSSPs). In order to mine the state information of schedule processing, a job-shop scheduling problem is divided into several classification-based subproblems. And a deep learning framewor...
Autores principales: | Zang, Zelin, Wang, Wanliang, Song, Yuhang, Lu, Linyan, Li, Weikun, Wang, Yule, Zhao, Yanwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6652087/ https://www.ncbi.nlm.nih.gov/pubmed/31379935 http://dx.doi.org/10.1155/2019/7172842 |
Ejemplares similares
-
Hybrid Quantum Annealing Heuristic Method for Solving Job Shop Scheduling Problem
por: Kurowski, Krzysztof, et al.
Publicado: (2020) -
A Genetic Approach to the Job Shop Scheduling Problem with Interval Uncertainty
por: Díaz, Hernán, et al.
Publicado: (2020) -
Evaluating the job shop scheduling problem on a D-wave quantum annealer
por: Carugno, Costantino, et al.
Publicado: (2022) -
Research on multi-agent genetic algorithm based on tabu search for the job shop scheduling problem
por: Peng, Chong, et al.
Publicado: (2019) -
A DNA algorithm for the job shop scheduling problem based on the Adleman-Lipton model
por: Tian, Xiang, et al.
Publicado: (2020)