Cargando…
Diethylstilbestrol inhibits human and rat 11β-hydroxysteroid dehydrogenase 2
Glucocorticoid hormone might cause intrauterine growth restriction. The glucocorticoid-metabolizing enzyme 11β-hydroxysteroid dehydrogenase 2 (HSD11B2) in the placenta eliminates excess levels of glucocorticoids during pregnancy. The aim of the current study was to define the effects of diethylstilb...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bioscientifica Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6652260/ https://www.ncbi.nlm.nih.gov/pubmed/31247589 http://dx.doi.org/10.1530/EC-19-0288 |
Sumario: | Glucocorticoid hormone might cause intrauterine growth restriction. The glucocorticoid-metabolizing enzyme 11β-hydroxysteroid dehydrogenase 2 (HSD11B2) in the placenta eliminates excess levels of glucocorticoids during pregnancy. The aim of the current study was to define the effects of diethylstilbestrol (DES) on HSD11B2 activity in the mammalian placentas and identify its mode of action. Rat and human placental microsomal HSD11B2 were incubated with different concentrations of DES, and IC(50) values were determined. The mode of action was analyzed by incubation of DES together with substrates, glucocorticoid and NAD(+). DES suppressed rat and human HSD11B2 with IC(50) values of 5.33 and 12.62 μM, respectively. DES was a competitive inhibitor of rat and human HSD11B2 when steroid substrates were added, while it was an uncompetitive inhibitor when cofactor NAD(+) was exposed. Oral administration of DES (0.5 mg/kg) to the rat delayed the cortisol metabolism in adult female Sprague–Dawley rats, as indicated by the increases in cortisol’s elimination half-life, maximum concentration and area under the curve. In conclusion, DES is a potent HSD11B2 inhibitor, possibly contributing to the intrauterine growth restriction. |
---|