Cargando…
Robust hierarchical density estimation and regression for re-stained histological whole slide image co-registration
For many disease conditions, tissue samples are colored with multiple dyes and stains to add contrast and location information for specific proteins to accurately identify and diagnose disease. This presents a computational challenge for digital pathology, as whole-slide images (WSIs) need to be pro...
Autores principales: | Jiang, Jun, Larson, Nicholas B., Prodduturi, Naresh, Flotte, Thomas J., Hart, Steven N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6655785/ https://www.ncbi.nlm.nih.gov/pubmed/31339943 http://dx.doi.org/10.1371/journal.pone.0220074 |
Ejemplares similares
-
Dicom_wsi: A Python Implementation for Converting Whole-Slide Images to Digital Imaging and Communications in Medicine Compliant Files
por: Gu, Qiangqiang, et al.
Publicado: (2021) -
Hyper-Stain Inspector: A Framework for Robust Registration and Localised Co-Expression Analysis of Multiple Whole-Slide Images of Serial Histology Sections
por: Trahearn, Nicholas, et al.
Publicado: (2017) -
Registration of histological whole slide images guided by vessel structures
por: Schwier, Michael, et al.
Publicado: (2013) -
Deep learning based registration of serial whole-slide histopathology images in different stains
por: Roy, Mousumi, et al.
Publicado: (2023) -
Regional registration of whole slide image stacks containing major histological artifacts
por: Paknezhad, Mahsa, et al.
Publicado: (2020)