Cargando…

The MyoRobot technology discloses a premature biomechanical decay of skeletal muscle fiber bundles derived from R349P desminopathy mice

Mutations in the Des gene coding for the muscle-specific intermediate filament protein desmin lead to myopathies and cardiomyopathies. We previously generated a R349P desmin knock-in mouse strain as a patient-mimicking model for the corresponding most frequent human desmin mutation R350P. Since noth...

Descripción completa

Detalles Bibliográficos
Autores principales: Haug, Michael, Meyer, Charlotte, Reischl, Barbara, Prölß, Gerhard, Vetter, Kristina, Iberl, Julian, Nübler, Stefanie, Schürmann, Sebastian, Rupitsch, Stefan J., Heckel, Michael, Pöschel, Thorsten, Winter, Lilli, Herrmann, Harald, Clemen, Christoph S., Schröder, Rolf, Friedrich, Oliver
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6656739/
https://www.ncbi.nlm.nih.gov/pubmed/31341183
http://dx.doi.org/10.1038/s41598-019-46723-6
_version_ 1783438676386119680
author Haug, Michael
Meyer, Charlotte
Reischl, Barbara
Prölß, Gerhard
Vetter, Kristina
Iberl, Julian
Nübler, Stefanie
Schürmann, Sebastian
Rupitsch, Stefan J.
Heckel, Michael
Pöschel, Thorsten
Winter, Lilli
Herrmann, Harald
Clemen, Christoph S.
Schröder, Rolf
Friedrich, Oliver
author_facet Haug, Michael
Meyer, Charlotte
Reischl, Barbara
Prölß, Gerhard
Vetter, Kristina
Iberl, Julian
Nübler, Stefanie
Schürmann, Sebastian
Rupitsch, Stefan J.
Heckel, Michael
Pöschel, Thorsten
Winter, Lilli
Herrmann, Harald
Clemen, Christoph S.
Schröder, Rolf
Friedrich, Oliver
author_sort Haug, Michael
collection PubMed
description Mutations in the Des gene coding for the muscle-specific intermediate filament protein desmin lead to myopathies and cardiomyopathies. We previously generated a R349P desmin knock-in mouse strain as a patient-mimicking model for the corresponding most frequent human desmin mutation R350P. Since nothing is known about the age-dependent changes in the biomechanics of affected muscles, we investigated the passive and active biomechanics of small fiber bundles from young (17–23 wks), adult (25–45 wks) and aged (>60 wks) heterozygous and homozygous R349P desmin knock-in mice in comparison to wild-type littermates. We used a novel automated biomechatronics platform, the MyoRobot, to perform coherent quantitative recordings of passive (resting length-tension curves, visco-elasticity) and active (caffeine-induced force transients, pCa-force, ‘slack-tests’) parameters to determine age-dependent effects of the R349P desmin mutation in slow-twitch soleus and fast-twitch extensor digitorum longus small fiber bundles. We demonstrate that active force properties are not affected by this mutation while passive steady-state elasticity is vastly altered in R349P desmin fiber bundles compatible with a pre-aged phenotype exhibiting stiffer muscle preparations. Visco-elasticity on the other hand, was not altered. Our study represents the first systematic age-related characterization of small muscle fiber bundle preparation biomechanics in conjunction with inherited desminopathy.
format Online
Article
Text
id pubmed-6656739
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-66567392019-07-29 The MyoRobot technology discloses a premature biomechanical decay of skeletal muscle fiber bundles derived from R349P desminopathy mice Haug, Michael Meyer, Charlotte Reischl, Barbara Prölß, Gerhard Vetter, Kristina Iberl, Julian Nübler, Stefanie Schürmann, Sebastian Rupitsch, Stefan J. Heckel, Michael Pöschel, Thorsten Winter, Lilli Herrmann, Harald Clemen, Christoph S. Schröder, Rolf Friedrich, Oliver Sci Rep Article Mutations in the Des gene coding for the muscle-specific intermediate filament protein desmin lead to myopathies and cardiomyopathies. We previously generated a R349P desmin knock-in mouse strain as a patient-mimicking model for the corresponding most frequent human desmin mutation R350P. Since nothing is known about the age-dependent changes in the biomechanics of affected muscles, we investigated the passive and active biomechanics of small fiber bundles from young (17–23 wks), adult (25–45 wks) and aged (>60 wks) heterozygous and homozygous R349P desmin knock-in mice in comparison to wild-type littermates. We used a novel automated biomechatronics platform, the MyoRobot, to perform coherent quantitative recordings of passive (resting length-tension curves, visco-elasticity) and active (caffeine-induced force transients, pCa-force, ‘slack-tests’) parameters to determine age-dependent effects of the R349P desmin mutation in slow-twitch soleus and fast-twitch extensor digitorum longus small fiber bundles. We demonstrate that active force properties are not affected by this mutation while passive steady-state elasticity is vastly altered in R349P desmin fiber bundles compatible with a pre-aged phenotype exhibiting stiffer muscle preparations. Visco-elasticity on the other hand, was not altered. Our study represents the first systematic age-related characterization of small muscle fiber bundle preparation biomechanics in conjunction with inherited desminopathy. Nature Publishing Group UK 2019-07-24 /pmc/articles/PMC6656739/ /pubmed/31341183 http://dx.doi.org/10.1038/s41598-019-46723-6 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Haug, Michael
Meyer, Charlotte
Reischl, Barbara
Prölß, Gerhard
Vetter, Kristina
Iberl, Julian
Nübler, Stefanie
Schürmann, Sebastian
Rupitsch, Stefan J.
Heckel, Michael
Pöschel, Thorsten
Winter, Lilli
Herrmann, Harald
Clemen, Christoph S.
Schröder, Rolf
Friedrich, Oliver
The MyoRobot technology discloses a premature biomechanical decay of skeletal muscle fiber bundles derived from R349P desminopathy mice
title The MyoRobot technology discloses a premature biomechanical decay of skeletal muscle fiber bundles derived from R349P desminopathy mice
title_full The MyoRobot technology discloses a premature biomechanical decay of skeletal muscle fiber bundles derived from R349P desminopathy mice
title_fullStr The MyoRobot technology discloses a premature biomechanical decay of skeletal muscle fiber bundles derived from R349P desminopathy mice
title_full_unstemmed The MyoRobot technology discloses a premature biomechanical decay of skeletal muscle fiber bundles derived from R349P desminopathy mice
title_short The MyoRobot technology discloses a premature biomechanical decay of skeletal muscle fiber bundles derived from R349P desminopathy mice
title_sort myorobot technology discloses a premature biomechanical decay of skeletal muscle fiber bundles derived from r349p desminopathy mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6656739/
https://www.ncbi.nlm.nih.gov/pubmed/31341183
http://dx.doi.org/10.1038/s41598-019-46723-6
work_keys_str_mv AT haugmichael themyorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT meyercharlotte themyorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT reischlbarbara themyorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT prolßgerhard themyorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT vetterkristina themyorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT iberljulian themyorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT nublerstefanie themyorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT schurmannsebastian themyorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT rupitschstefanj themyorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT heckelmichael themyorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT poschelthorsten themyorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT winterlilli themyorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT herrmannharald themyorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT clemenchristophs themyorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT schroderrolf themyorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT friedricholiver themyorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT haugmichael myorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT meyercharlotte myorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT reischlbarbara myorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT prolßgerhard myorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT vetterkristina myorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT iberljulian myorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT nublerstefanie myorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT schurmannsebastian myorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT rupitschstefanj myorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT heckelmichael myorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT poschelthorsten myorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT winterlilli myorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT herrmannharald myorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT clemenchristophs myorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT schroderrolf myorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice
AT friedricholiver myorobottechnologydisclosesaprematurebiomechanicaldecayofskeletalmusclefiberbundlesderivedfromr349pdesminopathymice