Cargando…
Improving ultrasound-based prostate volume estimation
BACKGROUND: To define a new coefficient to be used in the formula (Volume = L x H x W x Coefficient) that better estimates prostate volume using dimensions of fresh prostates from patients who had transrectal ultrasound (TRUS) imaging prior to prostatectomy. METHODS: The prostate was obtained from 1...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6657110/ https://www.ncbi.nlm.nih.gov/pubmed/31340802 http://dx.doi.org/10.1186/s12894-019-0492-2 |
Sumario: | BACKGROUND: To define a new coefficient to be used in the formula (Volume = L x H x W x Coefficient) that better estimates prostate volume using dimensions of fresh prostates from patients who had transrectal ultrasound (TRUS) imaging prior to prostatectomy. METHODS: The prostate was obtained from 153 patients, weighed and measured to obtain length (L), height (H), and width (W). The density was determined by water displacement to calculate volume. TRUS data were retrieved from patient charts. Linear regression analyses were performed to compare various prostate volume formulas, including the commonly used ellipsoid formula and newly introduced bullet-shaped formula. RESULTS: By relating measured prostate volumes from fresh prostates to TRUS-estimated prostate volumes, 0.66 was the best fitting coefficient in the (L x H x W x Coefficient) equation. This newfound coefficient combined with outlier removal yielded a linear equation with an R(2) of 0.64, compared to 0.55 and 0.60, for the ellipsoid and bullet, respectively. By comparing each of the measured vs. estimated dimensions, we observed that the mean prostate height and length were overestimated by 11.1 and 10.8% using ultrasound (p < 0.05), respectively, while the mean width was similar (p > 0.05). Overall, the ellipsoid formula underestimates prostate volumes by 18%, compared to an overestimation of 4.6 and 5.7% for the bullet formula and the formula using our coefficient, respectively. CONCLUSIONS: This study defines, for the first time, a coefficient based on freshly resected prostates as a reference to estimate volumes by imaging. Our findings support a bullet rather than an ellipsoid prostate shape. Moreover, substituting the coefficient commonly used in the ellipsoid formula by our calculated coefficient in the equation estimating prostate volume by TRUS, provides a more accurate value of the true prostate volume. |
---|