Cargando…

Hammett neural networks: prediction of frontier orbital energies of tungsten–benzylidyne photoredox complexes

The successful application of Hammett parameters as input features for regressive machine learning models is demonstrated and applied to predict energies of frontier orbitals of highly reducing tungsten–benzylidyne complexes of the form W([triple bond, length as m-dash]CArR)L(4)X. Using a reference...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Alexander M., Freeze, Jessica G., Batista, Victor S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6657405/
https://www.ncbi.nlm.nih.gov/pubmed/31391907
http://dx.doi.org/10.1039/c9sc02339a
_version_ 1783438791751499776
author Chang, Alexander M.
Freeze, Jessica G.
Batista, Victor S.
author_facet Chang, Alexander M.
Freeze, Jessica G.
Batista, Victor S.
author_sort Chang, Alexander M.
collection PubMed
description The successful application of Hammett parameters as input features for regressive machine learning models is demonstrated and applied to predict energies of frontier orbitals of highly reducing tungsten–benzylidyne complexes of the form W([triple bond, length as m-dash]CArR)L(4)X. Using a reference molecular framework and the meta- and para-substituent Hammett parameters of the ligands, the models predict energies of frontier orbitals that correlate with redox potentials. The regressive models capture the multivariate character of electron-donating trends as influenced by multiple substituents even for non-aryl ligands, harnessing the breadth of Hammett parameters in a generalized model. We find a tungsten catalyst with tetramethylethylenediamine (tmeda) equatorial ligands and axial methoxyl substituents that should attract significant experimental interest since it is predicted to be highly reducing when photoactivated with visible light. The utilization of Hammett parameters in this study presents a generalizable and compact representation for exploring the effects of ligand substitutions.
format Online
Article
Text
id pubmed-6657405
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-66574052019-08-07 Hammett neural networks: prediction of frontier orbital energies of tungsten–benzylidyne photoredox complexes Chang, Alexander M. Freeze, Jessica G. Batista, Victor S. Chem Sci Chemistry The successful application of Hammett parameters as input features for regressive machine learning models is demonstrated and applied to predict energies of frontier orbitals of highly reducing tungsten–benzylidyne complexes of the form W([triple bond, length as m-dash]CArR)L(4)X. Using a reference molecular framework and the meta- and para-substituent Hammett parameters of the ligands, the models predict energies of frontier orbitals that correlate with redox potentials. The regressive models capture the multivariate character of electron-donating trends as influenced by multiple substituents even for non-aryl ligands, harnessing the breadth of Hammett parameters in a generalized model. We find a tungsten catalyst with tetramethylethylenediamine (tmeda) equatorial ligands and axial methoxyl substituents that should attract significant experimental interest since it is predicted to be highly reducing when photoactivated with visible light. The utilization of Hammett parameters in this study presents a generalizable and compact representation for exploring the effects of ligand substitutions. Royal Society of Chemistry 2019-06-12 /pmc/articles/PMC6657405/ /pubmed/31391907 http://dx.doi.org/10.1039/c9sc02339a Text en This journal is © The Royal Society of Chemistry 2019 https://creativecommons.org/licenses/by-nc/3.0/This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0)
spellingShingle Chemistry
Chang, Alexander M.
Freeze, Jessica G.
Batista, Victor S.
Hammett neural networks: prediction of frontier orbital energies of tungsten–benzylidyne photoredox complexes
title Hammett neural networks: prediction of frontier orbital energies of tungsten–benzylidyne photoredox complexes
title_full Hammett neural networks: prediction of frontier orbital energies of tungsten–benzylidyne photoredox complexes
title_fullStr Hammett neural networks: prediction of frontier orbital energies of tungsten–benzylidyne photoredox complexes
title_full_unstemmed Hammett neural networks: prediction of frontier orbital energies of tungsten–benzylidyne photoredox complexes
title_short Hammett neural networks: prediction of frontier orbital energies of tungsten–benzylidyne photoredox complexes
title_sort hammett neural networks: prediction of frontier orbital energies of tungsten–benzylidyne photoredox complexes
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6657405/
https://www.ncbi.nlm.nih.gov/pubmed/31391907
http://dx.doi.org/10.1039/c9sc02339a
work_keys_str_mv AT changalexanderm hammettneuralnetworkspredictionoffrontierorbitalenergiesoftungstenbenzylidynephotoredoxcomplexes
AT freezejessicag hammettneuralnetworkspredictionoffrontierorbitalenergiesoftungstenbenzylidynephotoredoxcomplexes
AT batistavictors hammettneuralnetworkspredictionoffrontierorbitalenergiesoftungstenbenzylidynephotoredoxcomplexes