Cargando…
Hammett neural networks: prediction of frontier orbital energies of tungsten–benzylidyne photoredox complexes
The successful application of Hammett parameters as input features for regressive machine learning models is demonstrated and applied to predict energies of frontier orbitals of highly reducing tungsten–benzylidyne complexes of the form W([triple bond, length as m-dash]CArR)L(4)X. Using a reference...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6657405/ https://www.ncbi.nlm.nih.gov/pubmed/31391907 http://dx.doi.org/10.1039/c9sc02339a |
_version_ | 1783438791751499776 |
---|---|
author | Chang, Alexander M. Freeze, Jessica G. Batista, Victor S. |
author_facet | Chang, Alexander M. Freeze, Jessica G. Batista, Victor S. |
author_sort | Chang, Alexander M. |
collection | PubMed |
description | The successful application of Hammett parameters as input features for regressive machine learning models is demonstrated and applied to predict energies of frontier orbitals of highly reducing tungsten–benzylidyne complexes of the form W([triple bond, length as m-dash]CArR)L(4)X. Using a reference molecular framework and the meta- and para-substituent Hammett parameters of the ligands, the models predict energies of frontier orbitals that correlate with redox potentials. The regressive models capture the multivariate character of electron-donating trends as influenced by multiple substituents even for non-aryl ligands, harnessing the breadth of Hammett parameters in a generalized model. We find a tungsten catalyst with tetramethylethylenediamine (tmeda) equatorial ligands and axial methoxyl substituents that should attract significant experimental interest since it is predicted to be highly reducing when photoactivated with visible light. The utilization of Hammett parameters in this study presents a generalizable and compact representation for exploring the effects of ligand substitutions. |
format | Online Article Text |
id | pubmed-6657405 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-66574052019-08-07 Hammett neural networks: prediction of frontier orbital energies of tungsten–benzylidyne photoredox complexes Chang, Alexander M. Freeze, Jessica G. Batista, Victor S. Chem Sci Chemistry The successful application of Hammett parameters as input features for regressive machine learning models is demonstrated and applied to predict energies of frontier orbitals of highly reducing tungsten–benzylidyne complexes of the form W([triple bond, length as m-dash]CArR)L(4)X. Using a reference molecular framework and the meta- and para-substituent Hammett parameters of the ligands, the models predict energies of frontier orbitals that correlate with redox potentials. The regressive models capture the multivariate character of electron-donating trends as influenced by multiple substituents even for non-aryl ligands, harnessing the breadth of Hammett parameters in a generalized model. We find a tungsten catalyst with tetramethylethylenediamine (tmeda) equatorial ligands and axial methoxyl substituents that should attract significant experimental interest since it is predicted to be highly reducing when photoactivated with visible light. The utilization of Hammett parameters in this study presents a generalizable and compact representation for exploring the effects of ligand substitutions. Royal Society of Chemistry 2019-06-12 /pmc/articles/PMC6657405/ /pubmed/31391907 http://dx.doi.org/10.1039/c9sc02339a Text en This journal is © The Royal Society of Chemistry 2019 https://creativecommons.org/licenses/by-nc/3.0/This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0) |
spellingShingle | Chemistry Chang, Alexander M. Freeze, Jessica G. Batista, Victor S. Hammett neural networks: prediction of frontier orbital energies of tungsten–benzylidyne photoredox complexes |
title | Hammett neural networks: prediction of frontier orbital energies of tungsten–benzylidyne photoredox complexes
|
title_full | Hammett neural networks: prediction of frontier orbital energies of tungsten–benzylidyne photoredox complexes
|
title_fullStr | Hammett neural networks: prediction of frontier orbital energies of tungsten–benzylidyne photoredox complexes
|
title_full_unstemmed | Hammett neural networks: prediction of frontier orbital energies of tungsten–benzylidyne photoredox complexes
|
title_short | Hammett neural networks: prediction of frontier orbital energies of tungsten–benzylidyne photoredox complexes
|
title_sort | hammett neural networks: prediction of frontier orbital energies of tungsten–benzylidyne photoredox complexes |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6657405/ https://www.ncbi.nlm.nih.gov/pubmed/31391907 http://dx.doi.org/10.1039/c9sc02339a |
work_keys_str_mv | AT changalexanderm hammettneuralnetworkspredictionoffrontierorbitalenergiesoftungstenbenzylidynephotoredoxcomplexes AT freezejessicag hammettneuralnetworkspredictionoffrontierorbitalenergiesoftungstenbenzylidynephotoredoxcomplexes AT batistavictors hammettneuralnetworkspredictionoffrontierorbitalenergiesoftungstenbenzylidynephotoredoxcomplexes |