Cargando…

Combinatorial design of multimeric chelating peptoids for selective metal coordination

Current methods for metal chelation are generally based on multidentate organic ligands, which are generated through cumbersome multistep synthetic processes that lack flexibility for systematically varying metal-binding motifs. Octadentate ligands incorporating hydroxypyridinone or catecholamide bi...

Descripción completa

Detalles Bibliográficos
Autores principales: Ricano, Abel, Captain, Ilya, Carter, Korey P., Nell, Bryan P., Deblonde, Gauthier J.-P., Abergel, Rebecca J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6657411/
https://www.ncbi.nlm.nih.gov/pubmed/31391906
http://dx.doi.org/10.1039/c9sc01068h
Descripción
Sumario:Current methods for metal chelation are generally based on multidentate organic ligands, which are generated through cumbersome multistep synthetic processes that lack flexibility for systematically varying metal-binding motifs. Octadentate ligands incorporating hydroxypyridinone or catecholamide binding moieties onto a spermine scaffold are known to display some of the highest affinities towards f-elements. Enhancing binding affinity for specific lanthanide or actinide ions however, necessitates ligand architectures that allow for modular and high throughput synthesis. Here we introduce a high-throughput combinatorial library of 16 tetrameric N-substituted glycine oligomers (peptoids) containing hydroxypyridinone or catecholamide chelating units linked via an ethylenediamine bridge and, for comparison, we also synthesized the corresponding mixed ligands derived from the spermine scaffold: 3,4,3-LI(1,2-HOPO)(2)(CAM)(2) and 3,4,3-LI(CAM)(2)(1,2-HOPO)(2). Coordination-based luminescence studies were carried out with Eu(3+) and Tb(3+) to begin probing the properties of the new ligand architecture and revealed higher sensitization efficiency with the spermine scaffold as well as different spectroscopic features among the structural peptoid isomers. Solution thermodynamic properties of selected ligands revealed different coordination properties between the spermine and peptoid analogues with Eu(3+) stability constants log β(110) ranging from 28.88 ± 3.45 to 43.97 ± 0.49. The general synthetic strategy presented here paves the way for precision design of new specific and versatile ligands, with a variety of applications tailored towards the use of f-elements, including separations, optical device optimization, and pharmaceutical development.