Cargando…
SLCV–a supervised learning—computer vision combined strategy for automated muscle fibre detection in cross-sectional images
Muscle fibre cross-sectional area (CSA) is an important biomedical measure used to determine the structural composition of skeletal muscle, and it is relevant for tackling research questions in many different fields of research. To date, time consuming and tedious manual delineation of muscle fibres...
Autores principales: | Rettig, Anika, Haase, Tobias, Pletnyov, Alexandr, Kohl, Benjamin, Ertel, Wolfgang, von Kleist, Max, Sunkara, Vikram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6657690/ https://www.ncbi.nlm.nih.gov/pubmed/31367478 http://dx.doi.org/10.7717/peerj.7053 |
Ejemplares similares
-
Discerning the spatio-temporal disease patterns of surgically induced OA mouse models
por: Haase, Tobias, et al.
Publicado: (2019) -
Inferring gene regulatory networks from single-cell RNA-seq temporal snapshot data requires higher-order moments
por: Raharinirina, N. Alexia, et al.
Publicado: (2021) -
Multiscale Systems‐Pharmacology Pipeline to Assess the Prophylactic Efficacy of NRTIs Against HIV‐1
por: Duwal, S, et al.
Publicado: (2016) -
Unbiased single-cell morphology with self-supervised vision transformers
por: Doron, Michael, et al.
Publicado: (2023) -
Predictions of the mechanical properties of unidirectional fibre composites by supervised machine learning
por: Pathan, M. V., et al.
Publicado: (2019)