Cargando…

Construction of prognostic risk prediction model of oral squamous cell carcinoma based on co-methylated genes

This study aimed to identify DNA methylation markers in oral squamous cell carcinoma (OSCC) and to construct a prognostic prediction model of OSCC. For this purpose, the methylation data of patients with OSCC downloaded from The Cancer Genome Atlas were considered as a training dataset. The methylat...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Qiang, Tian, Gang, Gao, Jianyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6657967/
https://www.ncbi.nlm.nih.gov/pubmed/31198983
http://dx.doi.org/10.3892/ijmm.2019.4243
_version_ 1783438883612000256
author Zhu, Qiang
Tian, Gang
Gao, Jianyong
author_facet Zhu, Qiang
Tian, Gang
Gao, Jianyong
author_sort Zhu, Qiang
collection PubMed
description This study aimed to identify DNA methylation markers in oral squamous cell carcinoma (OSCC) and to construct a prognostic prediction model of OSCC. For this purpose, the methylation data of patients with OSCC downloaded from The Cancer Genome Atlas were considered as a training dataset. The methylation profiles of GSE37745 for OSCC samples were downloaded from Gene Expression Omnibus and considered as validation dataset. Differentially methylated genes (DMGs) were screened from the TCGA training dataset, followed by co-methylation analysis using weighted correlation network analysis (WGCNA). Subsequently, the methylation and gene expression levels of DMGs involved in key modules were extracted for correlation analysis. Prognosis-related methylated genes were screened using the univariate Cox regression analysis. Finally, the risk prediction model was constructed and validated through GSE52793. The results revealed that a total of 948 DMGs with CpGs were screened out. Co-methylation gene analysis obtained 2 (brown and turquoise) modules involving 380 DMGs. Correlation analysis revealed that the methylation levels of 132 genes negatively correlated with the gene expression levels. By combining with the clinical survival prognosis of samples, 5 optimized prognostic genes [centromere protein V (CENPV), Tubby bipartite transcription factor (TUB), synaptotagmin like 2 (SYTL2), occludin (OCLN) and CAS1 domain containing 1 (CASD1)] were selected for constructing a risk prediction model. It was consistent in the training dataset and GSE52793 that low-risk samples had a better survival prognosis. On the whole, this study indicates that the constructed risk prediction model based on CENPV, SYTL2, OCLN, CASD1, and TUB may have the potential to be used for predicting the survival prognosis of patients with OSCC.
format Online
Article
Text
id pubmed-6657967
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-66579672019-08-07 Construction of prognostic risk prediction model of oral squamous cell carcinoma based on co-methylated genes Zhu, Qiang Tian, Gang Gao, Jianyong Int J Mol Med Articles This study aimed to identify DNA methylation markers in oral squamous cell carcinoma (OSCC) and to construct a prognostic prediction model of OSCC. For this purpose, the methylation data of patients with OSCC downloaded from The Cancer Genome Atlas were considered as a training dataset. The methylation profiles of GSE37745 for OSCC samples were downloaded from Gene Expression Omnibus and considered as validation dataset. Differentially methylated genes (DMGs) were screened from the TCGA training dataset, followed by co-methylation analysis using weighted correlation network analysis (WGCNA). Subsequently, the methylation and gene expression levels of DMGs involved in key modules were extracted for correlation analysis. Prognosis-related methylated genes were screened using the univariate Cox regression analysis. Finally, the risk prediction model was constructed and validated through GSE52793. The results revealed that a total of 948 DMGs with CpGs were screened out. Co-methylation gene analysis obtained 2 (brown and turquoise) modules involving 380 DMGs. Correlation analysis revealed that the methylation levels of 132 genes negatively correlated with the gene expression levels. By combining with the clinical survival prognosis of samples, 5 optimized prognostic genes [centromere protein V (CENPV), Tubby bipartite transcription factor (TUB), synaptotagmin like 2 (SYTL2), occludin (OCLN) and CAS1 domain containing 1 (CASD1)] were selected for constructing a risk prediction model. It was consistent in the training dataset and GSE52793 that low-risk samples had a better survival prognosis. On the whole, this study indicates that the constructed risk prediction model based on CENPV, SYTL2, OCLN, CASD1, and TUB may have the potential to be used for predicting the survival prognosis of patients with OSCC. D.A. Spandidos 2019-09 2019-06-13 /pmc/articles/PMC6657967/ /pubmed/31198983 http://dx.doi.org/10.3892/ijmm.2019.4243 Text en Copyright: © Zhu et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Zhu, Qiang
Tian, Gang
Gao, Jianyong
Construction of prognostic risk prediction model of oral squamous cell carcinoma based on co-methylated genes
title Construction of prognostic risk prediction model of oral squamous cell carcinoma based on co-methylated genes
title_full Construction of prognostic risk prediction model of oral squamous cell carcinoma based on co-methylated genes
title_fullStr Construction of prognostic risk prediction model of oral squamous cell carcinoma based on co-methylated genes
title_full_unstemmed Construction of prognostic risk prediction model of oral squamous cell carcinoma based on co-methylated genes
title_short Construction of prognostic risk prediction model of oral squamous cell carcinoma based on co-methylated genes
title_sort construction of prognostic risk prediction model of oral squamous cell carcinoma based on co-methylated genes
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6657967/
https://www.ncbi.nlm.nih.gov/pubmed/31198983
http://dx.doi.org/10.3892/ijmm.2019.4243
work_keys_str_mv AT zhuqiang constructionofprognosticriskpredictionmodeloforalsquamouscellcarcinomabasedoncomethylatedgenes
AT tiangang constructionofprognosticriskpredictionmodeloforalsquamouscellcarcinomabasedoncomethylatedgenes
AT gaojianyong constructionofprognosticriskpredictionmodeloforalsquamouscellcarcinomabasedoncomethylatedgenes