Cargando…
Adapting State-of-the-Art Deep Language Models to Clinical Information Extraction Systems: Potentials, Challenges, and Solutions
BACKGROUND: Deep learning (DL) has been widely used to solve problems with success in speech recognition, visual object recognition, and object detection for drug discovery and genomics. Natural language processing has achieved noticeable progress in artificial intelligence. This gives an opportunit...
Autores principales: | Zhou, Liyuan, Suominen, Hanna, Gedeon, Tom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6658232/ https://www.ncbi.nlm.nih.gov/pubmed/31021325 http://dx.doi.org/10.2196/11499 |
Ejemplares similares
-
Benchmarking Clinical Speech Recognition and Information Extraction: New Data, Methods, and Evaluations
por: Suominen, Hanna, et al.
Publicado: (2015) -
Natural language processing: state of the art, current trends and challenges
por: Khurana, Diksha, et al.
Publicado: (2022) -
Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010
por: de Bruijn, Berry, et al.
Publicado: (2011) -
Augmented Reality (AR) for Surgical Robotic and Autonomous Systems: State of the Art, Challenges, and Solutions
por: Seetohul, Jenna, et al.
Publicado: (2023) -
Evaluating the state of the art in disorder recognition and normalization of the clinical narrative
por: Pradhan, Sameer, et al.
Publicado: (2015)