Cargando…

The Potential of Game-Based Digital Biomarkers for Modeling Mental Health

BACKGROUND: Assessment for mental health is performed by experts using interview techniques, questionnaires, and test batteries and following standardized manuals; however, there would be myriad benefits if behavioral correlates could predict mental health and be used for population screening or pre...

Descripción completa

Detalles Bibliográficos
Autores principales: Mandryk, Regan Lee, Birk, Max Valentin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6658250/
https://www.ncbi.nlm.nih.gov/pubmed/31012857
http://dx.doi.org/10.2196/13485
_version_ 1783438930378489856
author Mandryk, Regan Lee
Birk, Max Valentin
author_facet Mandryk, Regan Lee
Birk, Max Valentin
author_sort Mandryk, Regan Lee
collection PubMed
description BACKGROUND: Assessment for mental health is performed by experts using interview techniques, questionnaires, and test batteries and following standardized manuals; however, there would be myriad benefits if behavioral correlates could predict mental health and be used for population screening or prevalence estimations. A variety of digital sources of data (eg, online search data and social media posts) have been previously proposed as candidates for digital biomarkers in the context of mental health. Playing games on computers, gaming consoles, or mobile devices (ie, digital gaming) has become a leading leisure activity of choice and yields rich data from a variety of sources. OBJECTIVE: In this paper, we argue that game-based data from commercial off-the-shelf games have the potential to be used as a digital biomarker to assess and model mental health and health decline. Although there is great potential in games developed specifically for mental health assessment (eg, Sea Hero Quest), we focus on data gathered “in-the-wild” from playing commercial off-the-shelf games designed primarily for entertainment. METHODS: We argue that the activity traces left behind by natural interactions with digital games can be modeled using computational approaches for big data. To support our argument, we present an investigation of existing data sources, a categorization of observable traits from game data, and examples of potentially useful game-based digital biomarkers derived from activity traces. RESULTS: Our investigation reveals different types of data that are generated from play and the sources from which these data can be accessed. Based on these insights, we describe five categories of digital biomarkers that can be derived from game-based data, including behavior, cognitive performance, motor performance, social behavior, and affect. For each type of biomarker, we describe the data type, the game-based sources from which it can be derived, its importance for mental health modeling, and any existing statistical associations with mental health that have been demonstrated in prior work. We end with a discussion on the limitations and potential of data from commercial off-the-shelf games for use as a digital biomarker of mental health. CONCLUSIONS: When people play commercial digital games, they produce significant volumes of high-resolution data that are not only related to play frequency, but also include performance data reflecting low-level cognitive and motor processing; text-based data that are indicative of the affective state; social data that reveal networks of relationships; content choice data that imply preferred genres; and contextual data that divulge where, when, and with whom the players are playing. These data provide a source for digital biomarkers that may indicate mental health. Produced by engaged human behavior, game data have the potential to be leveraged for population screening or prevalence estimations, leading to at-scale, nonintrusive assessment of mental health.
format Online
Article
Text
id pubmed-6658250
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-66582502019-07-31 The Potential of Game-Based Digital Biomarkers for Modeling Mental Health Mandryk, Regan Lee Birk, Max Valentin JMIR Ment Health Viewpoint BACKGROUND: Assessment for mental health is performed by experts using interview techniques, questionnaires, and test batteries and following standardized manuals; however, there would be myriad benefits if behavioral correlates could predict mental health and be used for population screening or prevalence estimations. A variety of digital sources of data (eg, online search data and social media posts) have been previously proposed as candidates for digital biomarkers in the context of mental health. Playing games on computers, gaming consoles, or mobile devices (ie, digital gaming) has become a leading leisure activity of choice and yields rich data from a variety of sources. OBJECTIVE: In this paper, we argue that game-based data from commercial off-the-shelf games have the potential to be used as a digital biomarker to assess and model mental health and health decline. Although there is great potential in games developed specifically for mental health assessment (eg, Sea Hero Quest), we focus on data gathered “in-the-wild” from playing commercial off-the-shelf games designed primarily for entertainment. METHODS: We argue that the activity traces left behind by natural interactions with digital games can be modeled using computational approaches for big data. To support our argument, we present an investigation of existing data sources, a categorization of observable traits from game data, and examples of potentially useful game-based digital biomarkers derived from activity traces. RESULTS: Our investigation reveals different types of data that are generated from play and the sources from which these data can be accessed. Based on these insights, we describe five categories of digital biomarkers that can be derived from game-based data, including behavior, cognitive performance, motor performance, social behavior, and affect. For each type of biomarker, we describe the data type, the game-based sources from which it can be derived, its importance for mental health modeling, and any existing statistical associations with mental health that have been demonstrated in prior work. We end with a discussion on the limitations and potential of data from commercial off-the-shelf games for use as a digital biomarker of mental health. CONCLUSIONS: When people play commercial digital games, they produce significant volumes of high-resolution data that are not only related to play frequency, but also include performance data reflecting low-level cognitive and motor processing; text-based data that are indicative of the affective state; social data that reveal networks of relationships; content choice data that imply preferred genres; and contextual data that divulge where, when, and with whom the players are playing. These data provide a source for digital biomarkers that may indicate mental health. Produced by engaged human behavior, game data have the potential to be leveraged for population screening or prevalence estimations, leading to at-scale, nonintrusive assessment of mental health. JMIR Publications 2019-04-23 /pmc/articles/PMC6658250/ /pubmed/31012857 http://dx.doi.org/10.2196/13485 Text en ©Regan Lee Mandryk, Max Valentin Birk. Originally published in JMIR Mental Health (http://mental.jmir.org), 23.04.2019. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Mental Health, is properly cited. The complete bibliographic information, a link to the original publication on http://mental.jmir.org/, as well as this copyright and license information must be included.
spellingShingle Viewpoint
Mandryk, Regan Lee
Birk, Max Valentin
The Potential of Game-Based Digital Biomarkers for Modeling Mental Health
title The Potential of Game-Based Digital Biomarkers for Modeling Mental Health
title_full The Potential of Game-Based Digital Biomarkers for Modeling Mental Health
title_fullStr The Potential of Game-Based Digital Biomarkers for Modeling Mental Health
title_full_unstemmed The Potential of Game-Based Digital Biomarkers for Modeling Mental Health
title_short The Potential of Game-Based Digital Biomarkers for Modeling Mental Health
title_sort potential of game-based digital biomarkers for modeling mental health
topic Viewpoint
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6658250/
https://www.ncbi.nlm.nih.gov/pubmed/31012857
http://dx.doi.org/10.2196/13485
work_keys_str_mv AT mandrykreganlee thepotentialofgamebaseddigitalbiomarkersformodelingmentalhealth
AT birkmaxvalentin thepotentialofgamebaseddigitalbiomarkersformodelingmentalhealth
AT mandrykreganlee potentialofgamebaseddigitalbiomarkersformodelingmentalhealth
AT birkmaxvalentin potentialofgamebaseddigitalbiomarkersformodelingmentalhealth