Cargando…

The transcriptome of Darwin’s bark spider silk glands predicts proteins contributing to dragline silk toughness

Darwin’s bark spider (Caerostris darwini) produces giant orb webs from dragline silk that can be twice as tough as other silks, making it the toughest biological material. This extreme toughness comes from increased extensibility relative to other draglines. We show C. darwini dragline-producing maj...

Descripción completa

Detalles Bibliográficos
Autores principales: Garb, Jessica E., Haney, Robert A., Schwager, Evelyn E., Gregorič, Matjaž, Kuntner, Matjaž, Agnarsson, Ingi, Blackledge, Todd A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6658490/
https://www.ncbi.nlm.nih.gov/pubmed/31372514
http://dx.doi.org/10.1038/s42003-019-0496-1
_version_ 1783438966949675008
author Garb, Jessica E.
Haney, Robert A.
Schwager, Evelyn E.
Gregorič, Matjaž
Kuntner, Matjaž
Agnarsson, Ingi
Blackledge, Todd A.
author_facet Garb, Jessica E.
Haney, Robert A.
Schwager, Evelyn E.
Gregorič, Matjaž
Kuntner, Matjaž
Agnarsson, Ingi
Blackledge, Todd A.
author_sort Garb, Jessica E.
collection PubMed
description Darwin’s bark spider (Caerostris darwini) produces giant orb webs from dragline silk that can be twice as tough as other silks, making it the toughest biological material. This extreme toughness comes from increased extensibility relative to other draglines. We show C. darwini dragline-producing major ampullate (MA) glands highly express a novel silk gene transcript (MaSp4) encoding a protein that diverges markedly from closely related proteins and contains abundant proline, known to confer silk extensibility, in a unique GPGPQ amino acid motif. This suggests C. darwini evolved distinct proteins that may have increased its dragline’s toughness, enabling giant webs. Caerostris darwini’s MA spinning ducts also appear unusually long, potentially facilitating alignment of silk proteins into extremely tough fibers. Thus, a suite of novel traits from the level of genes to spinning physiology to silk biomechanics are associated with the unique ecology of Darwin’s bark spider, presenting innovative designs for engineering biomaterials.
format Online
Article
Text
id pubmed-6658490
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-66584902019-08-01 The transcriptome of Darwin’s bark spider silk glands predicts proteins contributing to dragline silk toughness Garb, Jessica E. Haney, Robert A. Schwager, Evelyn E. Gregorič, Matjaž Kuntner, Matjaž Agnarsson, Ingi Blackledge, Todd A. Commun Biol Article Darwin’s bark spider (Caerostris darwini) produces giant orb webs from dragline silk that can be twice as tough as other silks, making it the toughest biological material. This extreme toughness comes from increased extensibility relative to other draglines. We show C. darwini dragline-producing major ampullate (MA) glands highly express a novel silk gene transcript (MaSp4) encoding a protein that diverges markedly from closely related proteins and contains abundant proline, known to confer silk extensibility, in a unique GPGPQ amino acid motif. This suggests C. darwini evolved distinct proteins that may have increased its dragline’s toughness, enabling giant webs. Caerostris darwini’s MA spinning ducts also appear unusually long, potentially facilitating alignment of silk proteins into extremely tough fibers. Thus, a suite of novel traits from the level of genes to spinning physiology to silk biomechanics are associated with the unique ecology of Darwin’s bark spider, presenting innovative designs for engineering biomaterials. Nature Publishing Group UK 2019-07-25 /pmc/articles/PMC6658490/ /pubmed/31372514 http://dx.doi.org/10.1038/s42003-019-0496-1 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Garb, Jessica E.
Haney, Robert A.
Schwager, Evelyn E.
Gregorič, Matjaž
Kuntner, Matjaž
Agnarsson, Ingi
Blackledge, Todd A.
The transcriptome of Darwin’s bark spider silk glands predicts proteins contributing to dragline silk toughness
title The transcriptome of Darwin’s bark spider silk glands predicts proteins contributing to dragline silk toughness
title_full The transcriptome of Darwin’s bark spider silk glands predicts proteins contributing to dragline silk toughness
title_fullStr The transcriptome of Darwin’s bark spider silk glands predicts proteins contributing to dragline silk toughness
title_full_unstemmed The transcriptome of Darwin’s bark spider silk glands predicts proteins contributing to dragline silk toughness
title_short The transcriptome of Darwin’s bark spider silk glands predicts proteins contributing to dragline silk toughness
title_sort transcriptome of darwin’s bark spider silk glands predicts proteins contributing to dragline silk toughness
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6658490/
https://www.ncbi.nlm.nih.gov/pubmed/31372514
http://dx.doi.org/10.1038/s42003-019-0496-1
work_keys_str_mv AT garbjessicae thetranscriptomeofdarwinsbarkspidersilkglandspredictsproteinscontributingtodraglinesilktoughness
AT haneyroberta thetranscriptomeofdarwinsbarkspidersilkglandspredictsproteinscontributingtodraglinesilktoughness
AT schwagerevelyne thetranscriptomeofdarwinsbarkspidersilkglandspredictsproteinscontributingtodraglinesilktoughness
AT gregoricmatjaz thetranscriptomeofdarwinsbarkspidersilkglandspredictsproteinscontributingtodraglinesilktoughness
AT kuntnermatjaz thetranscriptomeofdarwinsbarkspidersilkglandspredictsproteinscontributingtodraglinesilktoughness
AT agnarssoningi thetranscriptomeofdarwinsbarkspidersilkglandspredictsproteinscontributingtodraglinesilktoughness
AT blackledgetodda thetranscriptomeofdarwinsbarkspidersilkglandspredictsproteinscontributingtodraglinesilktoughness
AT garbjessicae transcriptomeofdarwinsbarkspidersilkglandspredictsproteinscontributingtodraglinesilktoughness
AT haneyroberta transcriptomeofdarwinsbarkspidersilkglandspredictsproteinscontributingtodraglinesilktoughness
AT schwagerevelyne transcriptomeofdarwinsbarkspidersilkglandspredictsproteinscontributingtodraglinesilktoughness
AT gregoricmatjaz transcriptomeofdarwinsbarkspidersilkglandspredictsproteinscontributingtodraglinesilktoughness
AT kuntnermatjaz transcriptomeofdarwinsbarkspidersilkglandspredictsproteinscontributingtodraglinesilktoughness
AT agnarssoningi transcriptomeofdarwinsbarkspidersilkglandspredictsproteinscontributingtodraglinesilktoughness
AT blackledgetodda transcriptomeofdarwinsbarkspidersilkglandspredictsproteinscontributingtodraglinesilktoughness