Cargando…
Polarization independent dielectric metasurface for infrared beam steering applications
Over the past years, metasurfaces have been of great interest due to their ability manipulate optical wavefront by introducing a phase gradient across the transverse directions of the wave. This phase gradient was usually realized using plasmonic resonators which had high intrinsic losses. Here, we...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6658491/ https://www.ncbi.nlm.nih.gov/pubmed/31346197 http://dx.doi.org/10.1038/s41598-019-47097-5 |
Sumario: | Over the past years, metasurfaces have been of great interest due to their ability manipulate optical wavefront by introducing a phase gradient across the transverse directions of the wave. This phase gradient was usually realized using plasmonic resonators which had high intrinsic losses. Here, we demonstrate, numerically, a proof of principle of an all-dielectric silicon based metasurface at the infrared (IR) range that manipulates the wave front and achieves beam steering with significantly high transmission. The proposed cross-shaped unit cell design shows high transmission with the ability to fully control the phase of the transmitted wave from 0 to 2π. The metasurface is made of silicon cross resonators, arranged to have a linear phase gradient, on SiO(2) substrate which makes the device compatible with most standard semiconductor fabrication techniques. |
---|