Cargando…
An unsupervised neuromorphic clustering algorithm
Brains perform complex tasks using a fraction of the power that would be required to do the same on a conventional computer. New neuromorphic hardware systems are now becoming widely available that are intended to emulate the more power efficient, highly parallel operation of brains. However, to use...
Autores principales: | Diamond, Alan, Schmuker, Michael, Nowotny, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6658584/ https://www.ncbi.nlm.nih.gov/pubmed/30944983 http://dx.doi.org/10.1007/s00422-019-00797-7 |
Ejemplares similares
-
Comparing Neuromorphic Solutions in Action: Implementing a Bio-Inspired Solution to a Benchmark Classification Task on Three Parallel-Computing Platforms
por: Diamond, Alan, et al.
Publicado: (2016) -
Classification of multivariate data with a spiking neural network on neuromorphic hardware
por: Schmuker, Michael, et al.
Publicado: (2013) -
Unsupervised ranking of clustering algorithms by INFOMAX
por: Sikdar, Sandipan, et al.
Publicado: (2020) -
Classifying chemical sensor data using GPU-accelerated bio-mimetic neuronal networks based on the insect olfactory system
por: Diamond, Alan, et al.
Publicado: (2014) -
Unsupervised Adaptive Weight Pruning for Energy-Efficient Neuromorphic Systems
por: Guo, Wenzhe, et al.
Publicado: (2020)