Cargando…
Chemogenomic Profiling of Antileishmanial Efficacy and Resistance in the Related Kinetoplastid Parasite Trypanosoma brucei
The arsenal of drugs used to treat leishmaniasis, caused by Leishmania spp., is limited and beset by toxicity and emergent resistance. Furthermore, our understanding of drug mode of action and potential routes to resistance is limited. Forward genetic approaches have revolutionized our understanding...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6658743/ https://www.ncbi.nlm.nih.gov/pubmed/31160283 http://dx.doi.org/10.1128/AAC.00795-19 |
_version_ | 1783439015488258048 |
---|---|
author | Collett, Clare F. Kitson, Carl Baker, Nicola Steele-Stallard, Heather B. Santrot, Marie-Victoire Hutchinson, Sebastian Horn, David Alsford, Sam |
author_facet | Collett, Clare F. Kitson, Carl Baker, Nicola Steele-Stallard, Heather B. Santrot, Marie-Victoire Hutchinson, Sebastian Horn, David Alsford, Sam |
author_sort | Collett, Clare F. |
collection | PubMed |
description | The arsenal of drugs used to treat leishmaniasis, caused by Leishmania spp., is limited and beset by toxicity and emergent resistance. Furthermore, our understanding of drug mode of action and potential routes to resistance is limited. Forward genetic approaches have revolutionized our understanding of drug mode of action in the related kinetoplastid parasite Trypanosoma brucei. Therefore, we screened our genome-scale T. brucei RNA interference (RNAi) library against the current antileishmanial drugs sodium stibogluconate (antimonial), paromomycin, miltefosine, and amphotericin B. Identification of T. brucei orthologues of the known Leishmania antimonial and miltefosine plasma membrane transporters effectively validated our approach, while a cohort of 42 novel drug efficacy determinants provides new insights and serves as a resource. Follow-up analyses revealed the antimonial selectivity of the aquaglyceroporin TbAQP3. A lysosomal major facilitator superfamily transporter contributes to paromomycin-aminoglycoside efficacy. The vesicle-associated membrane protein TbVAMP7B and a flippase contribute to amphotericin B and miltefosine action and are potential cross-resistance determinants. Finally, multiple phospholipid-transporting flippases, including the T. brucei orthologue of the Leishmania miltefosine transporter, a putative β-subunit/CDC50 cofactor, and additional membrane-associated hits, affect amphotericin B efficacy, providing new insights into mechanisms of drug uptake and action. The findings from this orthology-based chemogenomic profiling approach substantially advance our understanding of antileishmanial drug action and potential resistance mechanisms and should facilitate the development of improved therapies as well as surveillance for drug-resistant parasites. |
format | Online Article Text |
id | pubmed-6658743 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-66587432019-08-07 Chemogenomic Profiling of Antileishmanial Efficacy and Resistance in the Related Kinetoplastid Parasite Trypanosoma brucei Collett, Clare F. Kitson, Carl Baker, Nicola Steele-Stallard, Heather B. Santrot, Marie-Victoire Hutchinson, Sebastian Horn, David Alsford, Sam Antimicrob Agents Chemother Mechanisms of Resistance The arsenal of drugs used to treat leishmaniasis, caused by Leishmania spp., is limited and beset by toxicity and emergent resistance. Furthermore, our understanding of drug mode of action and potential routes to resistance is limited. Forward genetic approaches have revolutionized our understanding of drug mode of action in the related kinetoplastid parasite Trypanosoma brucei. Therefore, we screened our genome-scale T. brucei RNA interference (RNAi) library against the current antileishmanial drugs sodium stibogluconate (antimonial), paromomycin, miltefosine, and amphotericin B. Identification of T. brucei orthologues of the known Leishmania antimonial and miltefosine plasma membrane transporters effectively validated our approach, while a cohort of 42 novel drug efficacy determinants provides new insights and serves as a resource. Follow-up analyses revealed the antimonial selectivity of the aquaglyceroporin TbAQP3. A lysosomal major facilitator superfamily transporter contributes to paromomycin-aminoglycoside efficacy. The vesicle-associated membrane protein TbVAMP7B and a flippase contribute to amphotericin B and miltefosine action and are potential cross-resistance determinants. Finally, multiple phospholipid-transporting flippases, including the T. brucei orthologue of the Leishmania miltefosine transporter, a putative β-subunit/CDC50 cofactor, and additional membrane-associated hits, affect amphotericin B efficacy, providing new insights into mechanisms of drug uptake and action. The findings from this orthology-based chemogenomic profiling approach substantially advance our understanding of antileishmanial drug action and potential resistance mechanisms and should facilitate the development of improved therapies as well as surveillance for drug-resistant parasites. American Society for Microbiology 2019-07-25 /pmc/articles/PMC6658743/ /pubmed/31160283 http://dx.doi.org/10.1128/AAC.00795-19 Text en Copyright © 2019 Collett et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Mechanisms of Resistance Collett, Clare F. Kitson, Carl Baker, Nicola Steele-Stallard, Heather B. Santrot, Marie-Victoire Hutchinson, Sebastian Horn, David Alsford, Sam Chemogenomic Profiling of Antileishmanial Efficacy and Resistance in the Related Kinetoplastid Parasite Trypanosoma brucei |
title | Chemogenomic Profiling of Antileishmanial Efficacy and Resistance in the Related Kinetoplastid Parasite Trypanosoma brucei |
title_full | Chemogenomic Profiling of Antileishmanial Efficacy and Resistance in the Related Kinetoplastid Parasite Trypanosoma brucei |
title_fullStr | Chemogenomic Profiling of Antileishmanial Efficacy and Resistance in the Related Kinetoplastid Parasite Trypanosoma brucei |
title_full_unstemmed | Chemogenomic Profiling of Antileishmanial Efficacy and Resistance in the Related Kinetoplastid Parasite Trypanosoma brucei |
title_short | Chemogenomic Profiling of Antileishmanial Efficacy and Resistance in the Related Kinetoplastid Parasite Trypanosoma brucei |
title_sort | chemogenomic profiling of antileishmanial efficacy and resistance in the related kinetoplastid parasite trypanosoma brucei |
topic | Mechanisms of Resistance |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6658743/ https://www.ncbi.nlm.nih.gov/pubmed/31160283 http://dx.doi.org/10.1128/AAC.00795-19 |
work_keys_str_mv | AT collettclaref chemogenomicprofilingofantileishmanialefficacyandresistanceintherelatedkinetoplastidparasitetrypanosomabrucei AT kitsoncarl chemogenomicprofilingofantileishmanialefficacyandresistanceintherelatedkinetoplastidparasitetrypanosomabrucei AT bakernicola chemogenomicprofilingofantileishmanialefficacyandresistanceintherelatedkinetoplastidparasitetrypanosomabrucei AT steelestallardheatherb chemogenomicprofilingofantileishmanialefficacyandresistanceintherelatedkinetoplastidparasitetrypanosomabrucei AT santrotmarievictoire chemogenomicprofilingofantileishmanialefficacyandresistanceintherelatedkinetoplastidparasitetrypanosomabrucei AT hutchinsonsebastian chemogenomicprofilingofantileishmanialefficacyandresistanceintherelatedkinetoplastidparasitetrypanosomabrucei AT horndavid chemogenomicprofilingofantileishmanialefficacyandresistanceintherelatedkinetoplastidparasitetrypanosomabrucei AT alsfordsam chemogenomicprofilingofantileishmanialefficacyandresistanceintherelatedkinetoplastidparasitetrypanosomabrucei |