Cargando…

Shell Architecture Strongly Influences the Glass Transition, Surface Mobility, and Elasticity of Polymer Core-Shell Nanoparticles

[Image: see text] Despite the growing application of nanostructured polymeric materials, there still remains a large gap in our understanding of polymer mechanics and thermal stability under confinement and near polymer–polymer interfaces. In particular, the knowledge of polymer nanoparticle thermal...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Eunsoo, Graczykowski, Bartlomiej, Jonas, Ulrich, Christie, Dane, Gray, Laura A. G., Cangialosi, Daniele, Priestley, Rodney D., Fytas, George
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6659035/
https://www.ncbi.nlm.nih.gov/pubmed/31367064
http://dx.doi.org/10.1021/acs.macromol.9b00766
Descripción
Sumario:[Image: see text] Despite the growing application of nanostructured polymeric materials, there still remains a large gap in our understanding of polymer mechanics and thermal stability under confinement and near polymer–polymer interfaces. In particular, the knowledge of polymer nanoparticle thermal stability and mechanics is of great importance for their application in drug delivery, phononics, and photonics. Here, we quantified the effects of a polymer shell layer on the modulus and glass-transition temperature (T(g)) of polymer core–shell nanoparticles via Brillouin light spectroscopy and modulated differential scanning calorimetry, respectively. Nanoparticles consisting of a polystyrene (PS) core and shell layers of poly(n-butyl methacrylate) (PBMA) were characterized as model systems. We found that the high T(g) of the PS core was largely unaffected by the presence of an outer polymer shell, whereas the lower T(g) of the PBMA shell layer decreased with increasing PBMA thickness. The surface mobility was revealed at a temperature about 15 K lower than the T(g) of the PBMA shell layer. Overall, the modulus of the core–shell nanoparticles decreased with increasing PBMA shell layer thickness. These results suggest that the nanoparticle modulus and T(g) can be tuned independently through the control of nanoparticle composition and architecture.