Cargando…
Using joint models to disentangle intervention effect types and baseline confounding: an application within an intervention study in prodromal Alzheimer’s disease with Fortasyn Connect
BACKGROUND: Many prodromal Alzheimer’s disease trials collect two types of data: the time until clinical diagnosis of dementia and longitudinal patient information. These data are often analysed separately, although they are strongly associated. By combining the longitudinal and survival data into a...
Autores principales: | van Oudenhoven, Floor M., Swinkels, Sophie H.N., Hartmann, Tobias, Soininen, Hilkka, van Hees, Anneke M.J., Rizopoulos, Dimitris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6659198/ https://www.ncbi.nlm.nih.gov/pubmed/31345172 http://dx.doi.org/10.1186/s12874-019-0791-z |
Ejemplares similares
-
A competing risk joint model for dealing with different types of missing data in an intervention trial in prodromal Alzheimer’s disease
por: van Oudenhoven, Floor M., et al.
Publicado: (2021) -
Correction: A competing risk joint model for dealing with different types of missing data in an intervention trial in prodromal Alzheimer’s disease
por: van Oudenhoven, Floor M., et al.
Publicado: (2023) -
Modeling the underlying biological processes in Alzheimer's disease using a multivariate competing risk joint model
por: van Oudenhoven, Floor M., et al.
Publicado: (2022) -
A marginal estimate for the overall treatment effect on a survival outcome within the joint modeling framework
por: van Oudenhoven, Floor M., et al.
Publicado: (2020) -
24-month intervention with a specific multinutrient in people with prodromal Alzheimer's disease (LipiDiDiet): a randomised, double-blind, controlled trial
por: Soininen, Hilkka, et al.
Publicado: (2017)