Cargando…
Improving the accuracy of two-sample summary-data Mendelian randomization: moving beyond the NOME assumption
BACKGROUND: Two-sample summary-data Mendelian randomization (MR) incorporating multiple genetic variants within a meta-analysis framework is a popular technique for assessing causality in epidemiology. If all genetic variants satisfy the instrumental variable (IV) and necessary modelling assumptions...
Autores principales: | Bowden, Jack, Del Greco M, Fabiola, Minelli, Cosetta, Zhao, Qingyuan, Lawlor, Debbie A, Sheehan, Nuala A, Thompson, John, Davey Smith, George |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6659376/ https://www.ncbi.nlm.nih.gov/pubmed/30561657 http://dx.doi.org/10.1093/ije/dyy258 |
Ejemplares similares
-
An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings
por: Sanderson, Eleanor, et al.
Publicado: (2019) -
Detecting and correcting for bias in Mendelian randomization analyses using Gene-by-Environment interactions
por: Spiller, Wes, et al.
Publicado: (2019) -
Elucidating the role of maternal environmental exposures on offspring health and disease using two-sample Mendelian randomization
por: Evans, David M, et al.
Publicado: (2019) -
Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the [Formula: see text] statistic
por: Bowden, Jack, et al.
Publicado: (2016) -
Using a two-sample Mendelian randomization design to investigate a possible causal effect of maternal lipid concentrations on offspring birth weight
por: Hwang, Liang-Dar, et al.
Publicado: (2019)