Cargando…

Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum

The proposal that paramagnetic transition metal complexes could be used as qubits for quantum information processing (QIP) requires that the molecules retain the spin information for a sufficient length of time to allow computation and error correction. Therefore, understanding how the electron spin...

Descripción completa

Detalles Bibliográficos
Autores principales: Ariciu, Ana-Maria, Woen, David H., Huh, Daniel N., Nodaraki, Lydia E., Kostopoulos, Andreas K., Goodwin, Conrad A. P., Chilton, Nicholas F., McInnes, Eric J. L., Winpenny, Richard E. P., Evans, William J., Tuna, Floriana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6659626/
https://www.ncbi.nlm.nih.gov/pubmed/31350411
http://dx.doi.org/10.1038/s41467-019-11309-3
_version_ 1783439169739030528
author Ariciu, Ana-Maria
Woen, David H.
Huh, Daniel N.
Nodaraki, Lydia E.
Kostopoulos, Andreas K.
Goodwin, Conrad A. P.
Chilton, Nicholas F.
McInnes, Eric J. L.
Winpenny, Richard E. P.
Evans, William J.
Tuna, Floriana
author_facet Ariciu, Ana-Maria
Woen, David H.
Huh, Daniel N.
Nodaraki, Lydia E.
Kostopoulos, Andreas K.
Goodwin, Conrad A. P.
Chilton, Nicholas F.
McInnes, Eric J. L.
Winpenny, Richard E. P.
Evans, William J.
Tuna, Floriana
author_sort Ariciu, Ana-Maria
collection PubMed
description The proposal that paramagnetic transition metal complexes could be used as qubits for quantum information processing (QIP) requires that the molecules retain the spin information for a sufficient length of time to allow computation and error correction. Therefore, understanding how the electron spin-lattice relaxation time (T(1)) and phase memory time (T(m)) relate to structure is important. Previous studies have focused on the ligand shell surrounding the paramagnetic centre, seeking to increase rigidity or remove elements with nuclear spins or both. Here we have studied a family of early 3d or 4f metals in the +2 oxidation states where the ground state is effectively a (2)S state. This leads to a highly isotropic spin and hence makes the putative qubit insensitive to its environment. We have studied how this influences T(1) and T(m) and show unusually long relaxation times given that the ligand shell is rich in nuclear spins and non-rigid.
format Online
Article
Text
id pubmed-6659626
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-66596262019-07-29 Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum Ariciu, Ana-Maria Woen, David H. Huh, Daniel N. Nodaraki, Lydia E. Kostopoulos, Andreas K. Goodwin, Conrad A. P. Chilton, Nicholas F. McInnes, Eric J. L. Winpenny, Richard E. P. Evans, William J. Tuna, Floriana Nat Commun Article The proposal that paramagnetic transition metal complexes could be used as qubits for quantum information processing (QIP) requires that the molecules retain the spin information for a sufficient length of time to allow computation and error correction. Therefore, understanding how the electron spin-lattice relaxation time (T(1)) and phase memory time (T(m)) relate to structure is important. Previous studies have focused on the ligand shell surrounding the paramagnetic centre, seeking to increase rigidity or remove elements with nuclear spins or both. Here we have studied a family of early 3d or 4f metals in the +2 oxidation states where the ground state is effectively a (2)S state. This leads to a highly isotropic spin and hence makes the putative qubit insensitive to its environment. We have studied how this influences T(1) and T(m) and show unusually long relaxation times given that the ligand shell is rich in nuclear spins and non-rigid. Nature Publishing Group UK 2019-07-26 /pmc/articles/PMC6659626/ /pubmed/31350411 http://dx.doi.org/10.1038/s41467-019-11309-3 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Ariciu, Ana-Maria
Woen, David H.
Huh, Daniel N.
Nodaraki, Lydia E.
Kostopoulos, Andreas K.
Goodwin, Conrad A. P.
Chilton, Nicholas F.
McInnes, Eric J. L.
Winpenny, Richard E. P.
Evans, William J.
Tuna, Floriana
Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum
title Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum
title_full Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum
title_fullStr Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum
title_full_unstemmed Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum
title_short Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum
title_sort engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6659626/
https://www.ncbi.nlm.nih.gov/pubmed/31350411
http://dx.doi.org/10.1038/s41467-019-11309-3
work_keys_str_mv AT ariciuanamaria engineeringelectronicstructuretoprolongrelaxationtimesinmolecularqubitsbyminimisingorbitalangularmomentum
AT woendavidh engineeringelectronicstructuretoprolongrelaxationtimesinmolecularqubitsbyminimisingorbitalangularmomentum
AT huhdanieln engineeringelectronicstructuretoprolongrelaxationtimesinmolecularqubitsbyminimisingorbitalangularmomentum
AT nodarakilydiae engineeringelectronicstructuretoprolongrelaxationtimesinmolecularqubitsbyminimisingorbitalangularmomentum
AT kostopoulosandreask engineeringelectronicstructuretoprolongrelaxationtimesinmolecularqubitsbyminimisingorbitalangularmomentum
AT goodwinconradap engineeringelectronicstructuretoprolongrelaxationtimesinmolecularqubitsbyminimisingorbitalangularmomentum
AT chiltonnicholasf engineeringelectronicstructuretoprolongrelaxationtimesinmolecularqubitsbyminimisingorbitalangularmomentum
AT mcinnesericjl engineeringelectronicstructuretoprolongrelaxationtimesinmolecularqubitsbyminimisingorbitalangularmomentum
AT winpennyrichardep engineeringelectronicstructuretoprolongrelaxationtimesinmolecularqubitsbyminimisingorbitalangularmomentum
AT evanswilliamj engineeringelectronicstructuretoprolongrelaxationtimesinmolecularqubitsbyminimisingorbitalangularmomentum
AT tunafloriana engineeringelectronicstructuretoprolongrelaxationtimesinmolecularqubitsbyminimisingorbitalangularmomentum